Skip to main content
Log in

Stabilization of enzyme-immobilized hydrogels for extended hypoxic cell culture

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

In this work, glucose oxidase (GOX)-immobilized hydrogels are developed and optimized as an easy and convenient means for creating solution hypoxia in a regular incubator. Specifically, acrylated GOX co-polymerizes with poly(ethylene glycol) diacrylate (PEGDA) to form PEGDA-GOX hydrogels. Results show that freeze-drying and reaction by-products, hydrogen peroxide, negatively affect oxygen-consuming activity of network-immobilized GOX. However, the negative effects of freeze-drying can be mitigated by addition of trehalose/raffinose in the hydrogel precursor solution, whereas the inhibition of GOX caused by hydrogen peroxide can be prevented via addition of glutathione (GSH) in the buffer/media. The ability to preserve enzyme activity following freeze-drying and during long-term incubation permits facile application of this material to induce long-term solution/media hypoxia in cell culture plasticware placed in a regular CO2 incubator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Askoxylakis, G. Millonig, U. Wirkner, C. Schwager, S. Rana, A. Altmann, U. Haberkorn, J. Debus, S. Mueller, P.E. Huber, Investigation of tumor hypoxia using a two-enzyme system for in vitro generation of oxygen deficiency. Radiat. Oncol. 6, 35 (2011)

    Article  Google Scholar 

  2. A. Hielscher, S. Gerecht, Hypoxia and free radicals: role in tumor progression and the use of engineering-based platforms to address these relationships. Free Radic. Biol. Med. 79, 281–291 (2015)

    Article  Google Scholar 

  3. M. Hockel, P. Vaupel, Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 93, 266–276 (2001)

    Article  Google Scholar 

  4. L. Liu, M.C. Simon, Regulation of transcription and translation by hypoxia. Cancer Biol Ther 3, 492–497 (2004)

    Article  Google Scholar 

  5. Y. Huang, K. Zitta, B. Bein, M. Steinfath, M. Albrecht, An insert-based enzymatic cell culture system to rapidly and reversibly induce hypoxia: investigations of hypoxia-induced cell damage, protein expression and phosphorylation in neuronal IMR-32 cells. Dis. Model. Mech. 6, 1507–1514 (2013)

    Article  Google Scholar 

  6. C. Li, W. Chaung, C. Mozayan, R. Chabra, P. Wang, R.K. Narayan, A new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. PLoS One 11, e0155921 (2016)

    Article  Google Scholar 

  7. S. Mueller, G. Millonig, G.N. Waite, The GOX/CAT system: a novel enzymatic method to independently control hydrogen peroxide and hypoxia in cell culture. Adv. Med. Sci. 54, 121–135 (2009)

    Article  Google Scholar 

  8. K.M. Park, M.R. Blatchley, S. Gerecht, The design of dextran-based hypoxia-inducible hydrogels via in situ oxygen-consuming reaction. Macromol. Rapid Commun. 35, 1968–1975 (2014)

    Article  Google Scholar 

  9. K.M. Park, S. Gerecht, Hypoxia-inducible hydrogels. Nat. Commun. 5, 4075 (2014)

    Article  Google Scholar 

  10. C.C. Peng, W.H. Liao, Y.H. Chen, C.Y. Wu, Y.C. Tung, A microfluidic cell culture array with various oxygen tensions. Lab Chip 13, 3239–3245 (2013)

    Article  Google Scholar 

  11. Rajan, N., et al. A novel oxygen tension programmable microfluidic system (oPROMs) for in vitro cell biology studies. in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII) 412-415 (2013)

  12. L.H. Fu, C. Qi, J. Lin, P. Huang, Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem. Soc. Rev. 47, 6454–6472 (2018)

    Article  Google Scholar 

  13. Fu, L.H., Qi, C., Hu, Y.R., Lin, J. & Huang, P. Glucose oxidase-instructed multimodal synergistic cancer therapy. Advanced materials (Deerfield Beach, Fla.) 2019 (31), e1808325

  14. M. Blatchley, K.M. Park, S. Gerecht, Designer hydrogels for precision control of oxygen tension and mechanical properties. J. Mater. Chem. B 3, 7939–7949 (2015)

    Article  Google Scholar 

  15. D.M. Lewis, K.M. Park, V. Tang, Y. Xu, K. Pak, T.S.K. Eisinger-Mathason, M.C. Simon, S. Gerecht, Intratumoral oxygen gradients mediate sarcoma cell invasion. Proc. Natl. Acad. Sci. U. S. A. 113, 9292–9297 (2016)

    Article  Google Scholar 

  16. C.S. Dawes, H. Konig, C.C. Lin, Enzyme-immobilized hydrogels to create hypoxia for in vitro cancer cell culture. J. Biotechnol. 248, 25–34 (2017)

    Article  Google Scholar 

  17. Kaushik, J.K. & Bhat, R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. The Journal of biological chemistry 2003 (278), 26458–26465

  18. A. Hedoux, L. Paccou, S. Achir, Y. Guinet, Mechanism of protein stabilization by trehalose during freeze-drying analyzed by in situ micro-raman spectroscopy. J. Pharm. Sci. 102, 2484–2494 (2013)

    Article  Google Scholar 

  19. J. Lee, E.W. Lin, U.Y. Lau, J.L. Hedrick, E. Bat, H.D. Maynard, Trehalose glycopolymers as excipients for protein stabilization. Biomacromolecules 14, 2561–2569 (2013)

    Article  Google Scholar 

  20. J. Zhao, S. Wang, J. Bao, X. Sun, X. Zhang, X. Zhang, D. Ye, J. Wei, C. Liu, X. Jiang, G. Shen, Z. Zhang, Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo. PLoS One 8, e54645 (2013)

    Article  Google Scholar 

  21. J. Lee, J.H. Ko, E.W. Lin, P. Wallace, F. Ruch, H.D. Maynard, Trehalose hydrogels for stabilization of enzymes to heat. Polym. Chem. 6, 3443–3448 (2015)

    Article  Google Scholar 

  22. T.M. O'Shea, M.J. Webber, A.A. Aimetti, R. Langer, Covalent incorporation of trehalose within hydrogels for enhanced long-term functional stability and controlled release of biomacromolecules. Adv Healthcare Mater 4, 1802–1812 (2015)

    Article  Google Scholar 

  23. Y. Liu, J. Lee, K.M. Mansfield, J.H. Ko, S. Sallam, C. Wesdemiotis, H.D. Maynard, Trehalose glycopolymer enhances both solution stability and pharmacokinetics of a therapeutic protein. Bioconjug. Chem. 28, 836–845 (2017)

    Article  Google Scholar 

  24. S.R. Kutcherlapati, N. Yeole, T. Jana, Urease immobilized polymer hydrogel: long-term stability and enhancement of enzymatic activity. J. Colloid Interface Sci. 463, 164–172 (2016)

    Article  Google Scholar 

  25. I. Roy, M.N. Gupta, Freeze-drying of proteins: some emerging concerns. Biotechnol. Appl. Biochem. 39, 165–177 (2004)

    Article  Google Scholar 

  26. K. Imamura, K. Murai, T. Korehisa, N. Shimizu, R. Yamahira, T. Matsuura, H. Tada, H. Imanaka, N. Ishida, K. Nakanishi, Characteristics of sugar surfactants in stabilizing proteins during freeze-thawing and freeze-drying. J. Pharm. Sci. 103, 1628–1637 (2014)

    Article  Google Scholar 

  27. B.T. Storey, E.E. Noiles, K.A. Thompson, Comparison of glycerol, other polyols, trehalose, and raffinose to provide a defined cryoprotectant medium for mouse sperm cryopreservation. Cryobiology 37, 46–58 (1998)

    Article  Google Scholar 

  28. U.Y. Lau, E.M. Pelegri-O'Day, H.D. Maynard, Synthesis and biological evaluation of a degradable trehalose glycopolymer prepared by RAFT polymerization. Macromol. Rapid Commun. 39 (2018)

  29. K. Kleppe, The effect of hydrogen peroxide on glucose oxidase from Aspergillus niger. Biochemistry 5, 139–143 (1966)

    Article  Google Scholar 

  30. J. Bao, K. Furumoto, M. Yoshimoto, Competitive inhibition by hydrogen peroxide produced in glucose oxidation catalyzed by glucose oxidase. Biochem. Eng. J. 13, 69–72 (2003)

    Article  Google Scholar 

  31. D. Hofstetter, T. Nauser, W.H. Koppenol, Hydrogen exchange equilibria in glutathione radicals: rate constants. Chem. Res. Toxicol. 23, 1596–1600 (2010)

    Article  Google Scholar 

  32. Z. Abedinzad, M. Gardes-Albert, C. Ferradini, Kinetic study of the oxidation mechanism of glutathione by hydrogen peroxide in neutral aqueous medium. Can. J. Chem. 67, 1247–1255 (1989)

    Article  Google Scholar 

  33. H. Shih, T. Greene, M. Korc, C.C. Lin, Modular and adaptable tumor niche prepared from visible light initiated thiol-norbornene photopolymerization. Biomacromolecules 17, 3872–3882 (2016)

    Article  Google Scholar 

  34. H.Y. Liu, M. Korc, C.C. Lin, Biomimetic and enzyme-responsive dynamic hydrogels for studying cell-matrix interactions in pancreatic ductal adenocarcinoma. Biomaterials 160, 24–36 (2018)

    Article  Google Scholar 

  35. G.L. Semenza, HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J. Appl. Physiol. 2000(88), 1474–1480 (1985)

    Google Scholar 

  36. A. Giaccia, B.G. Siim, R.S. Johnson, HIF-1 as a target for drug development. Nat. Rev. Drug Discov. 2, 803–811 (2003)

    Article  Google Scholar 

  37. T. Katagiri, M. Kobayashi, M. Yoshimura, A. Morinibu, S. Itasaka, M. Hiraoka, H. Harada, HIF-1 maintains a functional relationship between pancreatic cancer cells and stromal fibroblasts by upregulating expression and secretion of sonic hedgehog. Oncotarget 9, 10525–10535 (2018)

    Google Scholar 

Download references

Funding

This work was supported in part by a National Science Foundation Faculty Early Career Development (CAREER) Award (#1452390) and Walther Cancer Foundation Oncology Physical Sciences & Engineering Research Embedding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Chi Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudson, B.N., Dawes, C.S., Liu, HY. et al. Stabilization of enzyme-immobilized hydrogels for extended hypoxic cell culture. emergent mater. 2, 263–272 (2019). https://doi.org/10.1007/s42247-019-00038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-019-00038-4

Keywords

Navigation