Skip to main content
Log in

Effect of water loss during curing on hydration reaction and hydrates conversion in calcium aluminate cement-bonded castables

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Free water available in calcium aluminate cement (CAC)-bonded castables is crucial for the hydration of CAC and the conversion of hydration products in the curing and drying processes, as both the hydration and conversion reactions are dissolution–precipitation reactions. To elucidate the effect of different levels of free water loss upon the hydration of CAC, the conversion of hydration products and the mechanical strength of the CAC-bonded castables, the CAC-bonded castables were subjected to sealed and unsealed curing conditions at 50 °C and drying at 110 °C. The results demonstrate that the fast removal of free water during unsealed curing would hinder the conversion from 2CaO·Al2O3·8H2O to 3CaO·Al2O3·6H2O and consequently prevent the deterioration of strength. As a comparison, although sealed-cured samples have less water loss and high degree of hydration of CAC, they still show lower strength than the unsealed samples after curing. The following drying process further accelerates the hydration of residual calcium aluminate clinkers for both the sealed and unsealed samples, but still does not favor the conversion from 2CaO·Al2O3·8H2O to 3CaO·Al2O3·6H2O in the unsealed-cured samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Gogtas, H.F. Lopez, K. Sobolev, J. Eur. Ceram. Soc. 34 (2014) 1365–1373.

    Article  Google Scholar 

  2. Y. Wang, X. Li, B. Zhu, P. Chen, Ceram. Int. 42 (2016) 11355–11362.

    Article  Google Scholar 

  3. A.P. Luz, A.H.G. Gabriel, L.B. Consoni, C.G. Aneziris, V.C. Pandolfelli, Ceram. Int. 44 (2018) 2364–2375.

    Article  Google Scholar 

  4. M. Roig-Flores, T. Lucio-Martin, M.C. Alonso, L. Guerreiro, Cem. Concr. Res. 141 (2021) 106323.

    Article  Google Scholar 

  5. E. Sakai, T. Sugiyama, T. Saito, M. Daimon, Cem. Concr. Res. 40 (2010) 966–970.

    Article  Google Scholar 

  6. M. Heikal, M.M. Radwan, O.K. Al-Duaij, Constr. Build. Mater. 78 (2015) 379–385.

    Article  Google Scholar 

  7. W.E. Lee, W. Vieira, S. Zhang, K.G. Ahari, H. Sarpoolaky, C. Parr, Int. Mater. Rev. 46 (2001) 145–167.

    Article  Google Scholar 

  8. C. Parr, L. Bin, B. Valdelièvre, C. Wöhrmayer, B. Touzo, The advantages of calcium aluminate cement containing castables for steel ladle applications, in: Proeedings of ALAFAR 2004, 2004, pp. 10–15.

  9. A.P. Luz, V.C. Pandolfelli, Ceram. Int. 37 (2011) 3789–3793.

    Article  Google Scholar 

  10. T.J. Chotard, M.P. Boncoeur-Martel, A. Smith, J.P. Dupuy, C. Gault, Cem. Concr. Comp. 25 (2003) 145–152.

    Article  Google Scholar 

  11. B. Pacewska, M. Nowacka, J. Therm. Anal. Calorim. 117 (2014) 653–660.

    Article  Google Scholar 

  12. H. Pöllmann, Rev. Miner. Geochem. 74 (2012) 1–82.

    Article  Google Scholar 

  13. S.M. Bushnell-Watson, J.H. Sharp, Cem. Concr. Res. 16 (1986) 875–884.

    Article  Google Scholar 

  14. B. Pacewska, M. Nowacka, I. Wilińska, W. Kubissa, V. Antonovich, J. Therm. Anal. Calorim. 105 (2011) 129–140.

    Article  Google Scholar 

  15. F.A. Cardoso, M.D.M. Innocentini, M.M. Akiyoshi, V.C. Pandolfelli, J. Eur. Ceram. Soc. 24 (2004) 2073–2078.

    Article  Google Scholar 

  16. P. Garcés, E.G. Alcocel, S. Chinchón, C.G. Andreu, J. Alcaide, Cem. Concr. Res. 27 (1997) 1343–1355.

    Article  Google Scholar 

  17. Y. Li, L. Zhu, K. Liu, D. Ding, J. Zhang, G. Ye, Ceram. Int. 45 (2019) 12066–12071.

    Article  Google Scholar 

  18. F. Hueller, J. Neubauer, S. Kaessner, F. Goetz-Neunhoeffer, J. Am. Ceram. Soc. 102 (2019) 4376–4387.

    Article  Google Scholar 

  19. Y. Zhang, G. Ye, W. Gu, D. Ding, L. Chen, L. Zhu, J. Am. Ceram. Soc. 101 (2018) 2712–2717.

    Article  Google Scholar 

  20. C. Gosselin, K.L. Scrivener, in: C.H. Fentiman, R.J. Mangabhai, K.L. Scrivener (Eds.), Calcium Aluminate Cement: Proceedings of the Centenary Conference, HIS BRE Press, Avignon, France, 2008, pp. 109–122.

  21. M. Collepardi, S. Monosi, P. Piccioli, Cem. Concr. Res. 25 (1995) 961–968.

    Article  Google Scholar 

  22. B. Touzo, F. Simonin, C. Wöhrmeyer, C. Parr, in: Proceedings of the Unified International Technical Conference on Refractories, Orlando, Florida, USA, 2005, pp. 35–39.

  23. N. Li, X. Wang, Y. Mu, R. Zhang, L. Zhu, G. Ye, Constr. Build. Mater. 266 (2021) 120962.

    Article  Google Scholar 

  24. N. Ding, L. Jin, J. Zhang, Concrete (2013) No. 10, 128–132

  25. N. Ukrainczyk, T. Matusinovic, S. Kurajica, B. Zimmermann, J. Sipusic, Thermochim. Acta 464 (2007) 7–15.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (52172030) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-dong Mu or Guo-tian Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zz., Wang, Xy., Chu, Sz. et al. Effect of water loss during curing on hydration reaction and hydrates conversion in calcium aluminate cement-bonded castables. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-023-01161-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01161-7

Keywords

Navigation