Skip to main content

Advertisement

Log in

Mechanical performance of 22SiMn2TiB steel welded with low-transformation-temperature filler wire and stainless steel filler wire

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

TX-80 low-transformation-temperature (LTT) welding wire was used to replace the traditional ER 307Si welding wire to realize the connection of 22SiMn2TiB armor steel in manual overlay welding. The previously existing issues, such as welding cracks, large welding deformation, and severe welding residual stress, were solved to ensure good strength and ductility requirements. In particular, with the same welding conditions, TX-80 LTT wire eliminates welding cracks. It reduces the welding deformation no matter the base pretreatment of pre-setting angle or no pre-setting angle. By comparison, it was found that the microstructure at the TX-80 weld is mainly composed of martensite and a small amount of retained austenite. In contrast, the microstructure of the ER 307Si weld consists of a large amount of austenite and a small amount of skeleton-like ferrite. The variation trend of residual stress and microhardness from the weld to the base were investigated and compared with the mechanical properties of base materials. The TX-80 and the ER 307Si tensile samples elongation is 6.76% and 6.01%, while the ultimate tensile strengths are 877 and 667 MPa, respectively. The average impact toughness at room temperature of the ER 307Si weld is 143.9 J/cm2, much higher than that of the TX-80 weld, which is only 36.7 J/cm2. The relationship between impact and tensile properties with microstructure species and distribution was established. In addition, the fracture surface of the tensile and the impact samples was observed and analyzed. Deeper dimples, fewer pores, larger radiation zone, and shear lips of TX-80 samples indicate better tensile ductility and worse impact toughness than those of ER 307Si weld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. W.M.J.J. Garrison, JOM 42 (1990) No. 5, 20–24.

    Article  Google Scholar 

  2. T.W. Montemarano, B.P. Sack, J.P. Gudas, M.G. Vassilaros, H.H. Vanderveldt, J. Ship Prod. 2 (1986) 145–162.

    Article  Google Scholar 

  3. Y.K. Wang, J.A. Wharton, R.A. Shenoi, Corros. Sci. 86 (2014) 42–60.

    Article  Google Scholar 

  4. Z.D. Lin, Wire and arc additive manufacturing of thin structures using metal-cored wire consumables: microstructure, mechanical properties, and experiment-based thermal model, Delft University of Technology, Delft, Holland, 2019.

    Google Scholar 

  5. K. Song, Z. Lin, Z. Zhu, X. Zhao, W. Ya, C. Goulas, Y. Li, X. Yu, J. Mater. Sci. 58 (2023) 13183–13204.

    Article  Google Scholar 

  6. L. Qi, L. Yang, H.E. Shao-Hua, Bus Coach Technol. Res. 74 (2012) 375–391.

    Google Scholar 

  7. J. Xu, Y. Peng, S. Guo, Q. Zhou, J. Zhu, X. Li, J. Mater. Eng. Perform. 28 (2019) 6669–6681.

    Article  Google Scholar 

  8. Y. Wang, K. Zhang, Z. Guo, N. Chen, Y. Rong, Mater. Sci. Eng. A 552 (2012) 288–294.

    Article  Google Scholar 

  9. A. Barcellona, D. Palmeri, Metall. Mater. Trans. A 40 (2009) 1160–1174.

    Article  Google Scholar 

  10. B. Beidokhti, A. Dolati, A. Koukabi, Mater. Sci. Eng. A 507 (2009) 167–173.

    Article  Google Scholar 

  11. S. Papaefthymiou, A. Vazdirvanidis, G. Pantazopoulos, C. Goulas, J. Fail. Anal. Prev. 17 (2017) 79–85.

    Article  Google Scholar 

  12. X. Yu, J.L. Caron, S.S. Babu, J.C. Lippold, D. Isheim, D.N. Seidman, Acta Mater. 58 (2010) 5596–5609.

    Article  Google Scholar 

  13. T. Mohandas, G. Madhusudan Reddy, B. Satish Kumar, J. Mater. Process. Technol. 88 (1999) 284–294.

    Article  Google Scholar 

  14. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Mater. Sci. Eng. A 712 (2018) 720–737.

    Article  Google Scholar 

  15. P.H.O.M. Alves, M.S.F. Lima, D. Raabe, H.R.Z. Sandim, J. Mater. Process. Technol. 252 (2018) 498–510.

    Article  Google Scholar 

  16. M. Tamizi, M. Pouranvari, M. Movahedi, Sci. Technol. Weld. Join. 22 (2017) 327–335.

    Article  Google Scholar 

  17. K. Song, Z. Lin, Y. Fa, X. Zhao, Z. Zhu, W. Ya, Z. Sun, X. Yu, Metals 13 (2023) 764.

    Article  Google Scholar 

  18. Z. Shi, K. Liu, M. Wang, J. Shi, H. Dong, J. Pu, B. Chi, Y. Zhang, L. Jian, Mater. Sci. Eng. A 535 (2012) 290–296.

    Article  Google Scholar 

  19. D. Deng, Mater. Des. 30 (2009) 359–366.

    Article  Google Scholar 

  20. S.A. Mousavi, R. Miresmaeili, J. Mater. Process. Technol. 208 (2008) 383–394.

    Article  Google Scholar 

  21. X. Ye, J. Mech. Eng. 45 (2009) 283–286.

    Article  Google Scholar 

  22. Y. Yang, A. Wang, D. Xiong, Z. Wang, D. Zhou, S. Li, H. Zhang, Surf. Coat. Technol. 384 (2020) 125316.

    Article  Google Scholar 

  23. L. Song, Y. Peng, H. Zhao, Y. Cao, Q.J. Fang, Front. Mater. 9 (2022) 957669.

    Article  Google Scholar 

  24. J. Campbell, Complete casting handbook: metal casting processes, metallurgy, techniques and design, Butterworth-Heinemann, Oxford, UK, 2011.

    Google Scholar 

  25. H. Kihara, T. Kanazawa, H. Tamura, P. Roy Soc. A-Math. Phy. (1976) 247–258.

  26. M. Alhassan, Y. Bashiru, World J. Eng. Technol. 9 (2021) 782–792.

    Google Scholar 

  27. T. Nykänen, G. Marquis, T. Björk, Effect of weld geometry on the fatigue strength of fillet welded cruciform joints, in: Proceedings of the International Symposium on Integrated Design and Manufacturing of Welded Structures, Lappeenranta University of Technology, Lappeenranta, Lake Saimaa, Finland, 2007.

  28. S.J. Bless, J. Phys. D. Appl. Phys. 7 (1974) 526.

    Article  Google Scholar 

  29. Q.D. Wang, Y.Z. Lu, X.Q. Lu, L. Yizhen, X.Q. Zeng, W.J. Ding, Y.P. Zhu, Q.H. Li, J. Lan, Mater. Sci. Eng. A 271 (1999) 109–115.

    Article  Google Scholar 

  30. B. Keene, Int. Mater. Reviews (1988) 1–37.

  31. K.C. Mills, B.J. Keene, Int. Mater. Rev. 35 (1990) 185–216.

    Article  Google Scholar 

  32. C.B. Kim, D.W. Janes, S.X. Zhou, A.R. Dulaney, C.J. Ellison, Chemistry of Materials 27 (2015) 4538–4545.

  33. R. Ghorbel, A. Ktari, N. Haddar, Int. J. Adv. Manuf. Technol. 113 (2021) 3525–3542.

    Article  Google Scholar 

  34. G. Pouget, A.P. Reynolds, Int. J. Fatigue 30 (2008) 463–472.

  35. M. Lervåg, C. Sørensen, A. Robertstad, B.M. Brønstad, B. Nyhus, M. Eriksson, R. Aune, X. Ren, O.M. Akselsen, I. Bunaziv, Metals 10 (2020) 272.

    Article  Google Scholar 

  36. A.L. Schaeffler, Met. Progress 56 (1949) 680.

    Google Scholar 

  37. C.R. Shamantha, R. Narayanan, K.J.L. Iyer, V.M. Radhakrishnan, S.K. Seshadri, S. Sundararajan, S. Sundaresan, Mater. Sci. Eng. A 287 (2000) 43–51.

    Article  Google Scholar 

  38. C. Chen, T.T. Feng, G.R. Sun, H.J. Zhang, Manuf. Lett. 33 (2022) 42–45.

    Article  Google Scholar 

  39. Z.D. Lin, K.J. Song, B.D. Castri, W. Ya, X.H. Yu, J. Alloy. Compd. 921 (2022) 165630.

    Article  Google Scholar 

  40. R.C. Reed, H.K.D.H. Bhadeshia, Acta Metall. Mater. 42 (1994) 3663–3678.

    Article  Google Scholar 

  41. Z. Lin, K. Song, W. Ya, X. Yu, Journal of Physics: Conference Series 2101 (2021) 012049.

    Google Scholar 

  42. W. Liu, X. Liu, F. Lu, X. Tang, H. Cui, Y. Gao, Mater. Sci. Eng. A 644 (2015) 337–346.

    Article  Google Scholar 

Download references

Acknowledgements

The work is sponsored by the National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact (2021ZX52002222019), National Natural Science Foundation of China (NSFC No. U2141216), and the Beijing Institute of Technology Young Scholar Startup Program. The authors gratefully acknowledge financial support from the China Scholarship Council (CSC No: 202106030118) and technical support from the Experimental Center of Advanced Materials (ECAM) of the Beijing Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-hua Yu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Zd., Song, Kj., Sun, Z. et al. Mechanical performance of 22SiMn2TiB steel welded with low-transformation-temperature filler wire and stainless steel filler wire. J. Iron Steel Res. Int. 31, 967–981 (2024). https://doi.org/10.1007/s42243-023-01098-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01098-x

Keywords

Navigation