Skip to main content
Log in

Oxidation behavior of low-grade vanadiferous titanomagnetite concentrate with high titanium

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to clarify the oxidation mechanisms and make better use of the low-grade vanadiferous titanomagnetite concentrate with high titanium (LVTC), the oxidation behavior of LVTC was investigated. The results showed that oxidation degree was achieved within 90 min when temperature was not lower than 700 °C, and the main phases of the oxidized LVTC consisted of Fe9TiO15, Fe2O3, CaSiTiO5 and a small amount of Fe2.75Ti0.25O4. Increasing temperature is favorable to the formation of Fe2TiO5. The surface of LVTC gradually becomes rough, with fine particles of needle-like and granular shape appearing on the surface, which finally turn from laminar to creamy, spread out, and are interspersed with many tiny holes. The phase oxidation paths in LVTC were as follows: (1) Fe2.75Ti0.25O4 → Fe9TiO15 + Fe2O3; (2) Fe2.75Ti0.25O4 → Fe2O3 + FeTiO3 → Fe2TiO5; (3) FeTiO3 → Fe2O3 + Fe2Ti3O9 → Fe2TiO5. LVTC is predominantly mesoporous whether oxidized or not, with the pores mainly distributed in the range of 2–40 nm, and the specific surface area of LVTC decreases significantly with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.A. Bowles, M.J. Jackson, T.S. Berquó, P.A. Sølheid, J.S. Gee, Nat. Commun. 4 (2013) 1916.

    Article  PubMed  Google Scholar 

  2. J.Y. Yang, Y. Tang, K. Yang, A.A. Rouff, E.J. Elzinga, J.H. Huang, J. Hazard. Mater. 264 (2014) 498–504.

    Article  CAS  PubMed  Google Scholar 

  3. R.R. Moskalyk, A.M. Alfantazi, Miner. Eng. 16 (2003) 793–805.

    Article  CAS  Google Scholar 

  4. F.Q. Zheng, F. Chen, Y.F. Guo, T. Jiang, A.Y. Travyanov, G.Z. Qiu, JOM 68 (2016) 1476–1484.

    Article  CAS  ADS  Google Scholar 

  5. H.M. Long, T.J. Chun, P. Wang, Q.M. Meng, Z.X. Di, J.X. Li, Metall. Mater. Trans. B 47 (2016) 1765–1772.

    Article  CAS  Google Scholar 

  6. S.T. Yang, M. Zhou, T. Jiang, Y.J. Wang, X.X. Xue, Trans. Nonferrous Met. Soc. China 25 (2015) 2087–2094.

    Article  CAS  Google Scholar 

  7. Y.L. Sui, Y.F. Guo, T. Jiang, G.Z. Qiu, J. Alloy. Compd. 706 (2017) 546–553.

    Article  CAS  Google Scholar 

  8. S.Y. Chen, X.J. Fu, M.S. Chu, Z.G. Liu, J. Tang, J. Clean. Prod. 101 (2015) 122–128.

    Article  CAS  Google Scholar 

  9. C.B. Xu, Y.M. Zhang, T. Liu, J. Huang, Minerals 7 (2017) 137.

    Article  ADS  Google Scholar 

  10. W. Li, G.Q. Fu, M.S. Chu, M.Y. Zhu, Powder Technol. 343 (2019) 194–203.

    Article  CAS  Google Scholar 

  11. Z.D. Pang, X.W. Lv, J.W. Ling, Y.Y. Jiang, Z.M. Yan, J. Dang, Metall. Mater. Trans. B 51 (2020) 2348–2357.

    Article  CAS  Google Scholar 

  12. W. Li, G.Q. Fu, M.S. Chu, M.Y. Zhu, Ironmak. Steelmak. 48 (2021) 33–39.

    Article  CAS  Google Scholar 

  13. W. Li, G.Q. Fu, M.S. Chu, M.Y. Zhu, JOM 70 (2018) 76–80.

    Article  CAS  ADS  Google Scholar 

  14. J.J. Shi, Y.C. Qiu, B. Yu, X.K. Xie, J.J. Dong, C.L. Hou, J.Z. Li, C.S. Liu, JOM 74 (2022) 654–667.

    Article  CAS  ADS  Google Scholar 

  15. M. Gan, Y.F. Sun, X.H. Fan, Z.Y. Ji, W. Lv, X.L. Chen, T. Jiang, Ironmak. Steelmak. 47 (2020) 130–137.

    Article  CAS  Google Scholar 

  16. G.J. Cheng, X.X. Xue, T. Jiang, P.N. Duan, Metall. Mater. Trans. B 47 (2016) 1713–1726.

    Article  CAS  Google Scholar 

  17. W. Li, G.Q. Fu, M.S. Chu, M.Y. Zhu, Ironmak. Steelmak. 47 (2020) 837–843.

    Article  CAS  Google Scholar 

  18. W. Li, N. Wang, G.Q. Fu, M.S. Chu, M.Y. Zhu, Powder Technol. 326 (2018) 137–145.

    Article  CAS  Google Scholar 

  19. S.W. Prabowo, R.J. Longbottom, B.J. Monaghan, D. del Puerto, M.J. Ryan, C.W. Bumby, Metall. Mater. Trans. B 50 (2019) 1729–1744.

    Article  CAS  Google Scholar 

  20. W. Li, G.Q. Fu, M.S. Chu, M.Y. Zhu, Ironmak. Steelmak. 44 (2017) 294–303.

    Article  CAS  Google Scholar 

  21. W. Li, G.Q. Fu, M.S. Chu, M.Y. Zhu, Powder Technol. 360 (2020) 555–561.

    Article  CAS  Google Scholar 

  22. X. Fu, Y. Wang, F. Wei, Metall. Mater. Trans. A 41 (2010) 1338–1348.

    Article  Google Scholar 

  23. G.H. Han, T. Jiang, Y.B. Zhang, Y.F. Huang, G.H. Li, J. Iron Steel Res. Int. 18 (2011) No. 8, 14–19.

    Article  CAS  Google Scholar 

  24. J. Tang, M.S. Chu, C. Feng, F. Li, Z.G. Liu, High Temp. Mater. Processes 35 (2016) 729–738.

    Article  CAS  ADS  Google Scholar 

  25. R.Q. Zeng, W. Li, N. Wang, G.Q. Fu, M.S. Chu, M.Y. Zhu, ISIJ Int. 61 (2021) 100–107.

    Article  CAS  Google Scholar 

  26. A.A. Adetoro, H.Y. Sun, S.Y. He, Q.S. Zhu, H.Z. Li, Metall. Mater. Trans. B 49 (2018) 846–857.

    Article  CAS  Google Scholar 

  27. J.W. Yu, N. Hu, H.X. Xiao, P. Gao, Y.S. Sun, Powder Technol. 385 (2021) 83–91.

    Article  CAS  Google Scholar 

  28. G.J. Cheng, Z.X. Gao, M.Y. Lv, H. Yang, X.X. Xue, Minerals 7 (2017) 86.

    Article  ADS  Google Scholar 

  29. X.F. Luo, H. Dong, S. Zhang, Y.W. Liu, Energy Sources, Part A 40 (2018) 1998–2008.

    Article  CAS  Google Scholar 

  30. W. Xiao, X.G. Lu, X.L. Zou, X.M. Wei, W.Z. Ding, Trans. Nonferrous Met. Soc. China 23 (2013) 2439–2445.

    Article  CAS  Google Scholar 

  31. L.C.A. Oliveira, J.D. Fabris, R.R.V.A. Rios, W.N. Mussel, R.M. Lago, Appl. Catal. A 259 (2004) 253–259.

    Article  CAS  Google Scholar 

  32. F. Pan, Q.S. Zhu, Z. Du, H.Y. Sun, J. Iron Steel Res. Int. 23 (2016) 1160–1167.

    Article  Google Scholar 

  33. J.B. Zhang, Q.S. Zhu, Z.H. Xie, C. Lei, H.Z. Li, Metall. Mater. Trans. B 44 (2013) 897–905.

    Article  CAS  Google Scholar 

  34. G.J. Cheng, T. Han, X.F. Zhang, X.X. Xue, H. Yang, R.G. Bai, W.J. Zhang, J. Clean. Prod. 410 (2023) 137184.

    Article  CAS  Google Scholar 

  35. H.L. Song, J.P. Zhang, X.X. Xue, Processes 9 (2021) 811.

    Article  CAS  Google Scholar 

  36. A.F. Buddington, D.H. Lindsley, J. Petrol. 5 (1964) 310–357.

    Article  CAS  ADS  Google Scholar 

  37. E. Park, O. Ostrovski, ISIJ Int. 44 (2004) 74–81.

    Article  CAS  Google Scholar 

  38. J. Jagiello, M. Thommes, Carbon 42 (2004) 1227–1232.

    Article  CAS  Google Scholar 

  39. K.S.W. Sing, D.H. Eerett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure and Applied Chemistry 57 (1985) 603–619.

    Article  CAS  Google Scholar 

  40. W.Y. Qu, T. Yuan, G.J. Yin, S.A. Xu, Q. Zhang, H.J. Su, Fuel 249 (2019) 45–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant Nos. 51674084, 21908020 and U1908226) and the National Key R&D Program of China (No. 2017YFB0603801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-yong Ding or Xiang-xin Xue.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled. We all declare that the work in this paper described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or part.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Js., Xing, Zx., Cheng, Gj. et al. Oxidation behavior of low-grade vanadiferous titanomagnetite concentrate with high titanium. J. Iron Steel Res. Int. 31, 329–341 (2024). https://doi.org/10.1007/s42243-023-01077-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01077-2

Keywords

Navigation