Skip to main content
Log in

Microstructure and shear properties evolution of Mn-doped SAC solder joint under isothermal aging

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effects of Mn addition (0.005, 0.01, 0.03, 0.05, and 0.07 wt.%) on microstructure, shear mechanical behavior, and interfacial thermal stabilities of SAC305 joints were investigated under isothermal aging temperatures of 170 °C with different aging time (0, 250, 500, and 750 h). It is found that Mn addition can increase fracture energy of joints without decreasing the shear strength. And the microstructures have transformed from the eutectic net-like structure in SAC305 solder joints into the structures based on β-Sn matrix with intermetallic compounds (IMCs) distributed. By doping 0.07 wt.% Mn, the Cu6Sn5 growth along the SAC305/Cu interface during thermal aging can be inhibited to some extent. During isothermal aging at 170 °C, the maximum shear force of solder joint decreases continuously with aging time increasing, while the fracture energy rises first and then decreases, reaching the maximum at 500 h compared by that with the microstructure homogenization. Cu3Sn growth between Cu6Sn5/Cu interface has been retarded most at the aging time of 250 h with 0.07 wt.% Mn-doped joints. With the aging time prolonging, the inhibition effect of Mn on Cu3Sn IMC layer becomes worse. The strengthening effect of Mn can be explained by precipitation strengthening, and its mechanical behavior can be predicted by particle strengthening model proposed by Orowan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Tu, C. Chen, H. Chen, Electronic packaging science and technology, John Wiley & Sons, Inc, Hoboken, USA, 2022.

    Google Scholar 

  2. H. Nishikawa, M.H. Roh, A. Fujita, N. Kamada, in: 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC), IEEE, Pisa, Italy, 2020, pp. 1–4.

  3. A.Z. Miric, Balance 90 (2010) 91–96.

    Google Scholar 

  4. E. Dalton, G. Ren, J. Punch, M.N. Collins, Mater. Des. 154 (2018) 184–191.

    Article  Google Scholar 

  5. A. Fahim, S. Ahmed, M.R. Chowdhury, J.C. Suhling, P. Lall, in: 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), IEEE, Las Vegas, NV, USA, 2016, pp. 1218–1224.

  6. P. Snugovsky, S. Bagheri, M. Romansky, D. Perovic, L. Snugovsky, J. Rutter, in: International Conference on Soldering and Reliability, ICSR, Toronto, CA, Canada, 2012, pp. 31–42.

  7. K. Morooka, Y. Kariya, Mater. Trans. 62 (2021) 205–212.

    Article  Google Scholar 

  8. X. Wang, Q. Zhu, Z. Wang, J. Shang, Acta Metall. Sin. (Engl. Lett.) 45 (2019) 912–918.

    Google Scholar 

  9. J.W. Xian, S.A. Belyakov, C.M. Gourlay, J. Electron. Mater. 50 (2021) 786–795.

    Article  Google Scholar 

  10. T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, B. Nandagopal, IEEE Trans. Compon. Packag. Technol. 31 (2008) 370–381.

    Article  Google Scholar 

  11. S. Wang, Y. Yao, in: 2017 18th International Conference on Electronic Packaging Technology (ICEPT), IEEE, Harbin, China, 2017, pp. 1547–1551.

  12. Y. Zhang, Z. Cai, J.C. Suhling, P. Lall, M.J. Bozack, in: 2008 58th Electronic Components and Technology Conference, IEEE, Lake Buena Vista, FL, USA, 2008, pp. 99–112.

  13. H. Zhang, S.P. Lim, S. Lytwynec, T. Richmond, T. Harter, in: International Conference on Electronics Packaging (ICEP), IEEE, Sapporo, Japan, 2022, pp. 69–70.

  14. T. Courtney, Mechanical behavior of materials, 2nd ed., McGraw-Hill Co., Inc., Boston, USA, 2000.

    Google Scholar 

  15. SA. Belyakov, T. Nishimura, T. Akaiwa, K. Sweatman, K. Nogita, C.M. Gourlay, in: International Conference on Electronics Packaging (ICEP), Niigata, Japan, 2019, pp. 235–239.

  16. M. Moriuchi, Y. Kariya, M. Kondo, Y. Kanda, Mater. Trans. 63 (2022) 805–812.

    Article  Google Scholar 

  17. X. Wu, J. Wu, X. Wang, J. Yang, M. Xia, B. Liu, J. Mater. Sci. 55 (2020) 3092–3106.

    Article  Google Scholar 

  18. I.E. Anderson, J.L. Harringa, J. Electron. Mater. 35 (2006) 94–106.

    Article  Google Scholar 

  19. P. Sungkhaphaitoon, T. Plookphol, Metall. Mater. Trans. A 49 (2018) 652–660.

    Article  Google Scholar 

  20. Z.H. Li, L. Zhang, L.L. Gao, W.M. Long, S.J. Zhong, L. Zhang, J. Mater. Sci. Mater. Electron. 33 (2022) 7923–7932.

    Article  Google Scholar 

  21. L. Zhang, W.M. Long, F.J. Wang, J. Mater. Sci. Mater. Electron. 31 (2020) 6645–6653.

    Article  Google Scholar 

  22. L. Zhang, Z.Q. Liu, F. Yang, S.J. Zhong, Materials 10 (2017) 327.

    Article  Google Scholar 

  23. R. Coyle, R. Parker, B. Arfaei, F. Mutuku, K. Sweatman, K. Howell, S. Longgood, E. Benedetto, in: IEEE 64th Electronic Components and Technology Conference (ECTC), IEEE, Orlando, USA, 2014, pp. 425–440.

  24. Y. Zhong, W. Liu, C. Wang, X. Zhao, J.F.J.M. Caers, Mater. Sci. Eng. A 652 (2016) 264–270.

    Article  Google Scholar 

  25. N.R.A. Razak, M.A.A. Mohd Salleh, N. Saud, R.M. Said, M.I.I. Ramli, Solid State Phenom. 273 (2018) 40–45.

    Article  Google Scholar 

  26. G. Zeng, S.D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, K. Nogita, Acta Mater. 83 (2015) 357–371.

    Article  Google Scholar 

  27. G. Zeng, S.D. McDonald, D. Mu, Y. Terada, H. Yasuda, Q. Gu, M.A.A.M. Salleh, K. Nogita, J. Alloy. Compd. 685 (2016) 471–482.

    Article  Google Scholar 

  28. L.H. Bennett, Theory of Alloy Phase Formation, Metallurgical Society of AIME, Warrendale, PA, USA, 1980.

    Google Scholar 

  29. K.S. Kim, S.H. Huh, K. Suganuma, Microelectron. Reliab. 43 (2003) 259–267.

    Article  Google Scholar 

  30. L.W. Lin, J.M. Song, Y.S. Lai, Y.T. Chiu, N.C. Lee, J.Y. Uan, Microelectron. Reliab. 49 (2009) 235–241.

    Article  Google Scholar 

  31. W. Liu, N.C. Lee, A. Porras, M. Ding, A. Gallagher, A. Huang, S. Chen, J.C.B. Lee, in: 2009 59th Electronic Components and Technology Conference, IEEE, San Diego, USA, 2009, pp. 994–1007.

  32. M. Ghosh, A. Kar, S.K. Das, A.K. Ray, Metall. Mater. Trans. A 40 (2009) 2369–2376.

    Article  Google Scholar 

  33. J.M. Song, Y.R. Liu, Y.S. Lai, Y.T. Chiu, N.C. Lee, Microelectron. Reliab. 52 (2012) 180–189.

    Article  Google Scholar 

  34. D.R. Wang, M.S. Zhang, H. Qiang, W.F. Zhang, Mater. Sci. Forum 898 (2017) 908–916.

    Article  Google Scholar 

  35. Y. Tang, S.M. Luo, W.F. Huang, Y.C. Pan, G.Y. Li, J. Alloy. Compd. 719 (2017) 365–375.

    Article  Google Scholar 

  36. Y. Tang, S.M. Luo, G.Y. Li, Z. Yang, R. Chen, Y. Han, C.J. Hou, J. Electron. Mater. 47 (2018) 1673–1685.

    Article  Google Scholar 

  37. C.M. Gourlay, S.A. Belyakov, Z.L. Ma, J.W. Xian, JOM 67 (2015) 2383–2393.

    Article  Google Scholar 

  38. C.M. Gourlay, Z.L. Ma, J.W. Xian, S.A. Belyakov, M.A.A. Mohd Salleh, G. Zeng, H. Yasuda, K. Nogita, Mater. Sci. Forum 857 (2016) 44–48.

    Article  Google Scholar 

  39. J.M. Koo, S.B. Jung, Microelectron. Reliab. 47 (2007) 2169–2178.

    Article  Google Scholar 

  40. M.A.A.M. Salleh, C.M. Gourlay, J.W. Xian, S.A. Belyakov, H. Yasuda, S.D. McDonald, K. Nogita, Sci. Rep. 7 (2017) 40010.

    Article  Google Scholar 

  41. H. Tsukamoto, T. Nishimura, S. Suenaga, S.D. McDonald, K.W. Sweatman, K. Nogita, Microelectron. Reliab. 51 (2011) 657–667.

    Article  Google Scholar 

  42. H. Xu, F. Liu, L. Zhou, H. Zhao, M. Li, Microelectron. Reliab. 110 (2020) 113623.

    Article  Google Scholar 

  43. N. Hou, J.W. Xian, A. Sugiyama, H. Yasuda, C.M. Gourlay, Metall. Mater. Trans. A 54 (2023) 909–927.

    Article  Google Scholar 

  44. L. Zhang, S.B. Xue, G. Zeng, L.L. Gao, H. Ye, J. Alloy. Compd. 510 (2012) 38–45.

    Article  Google Scholar 

  45. I. Dutta, P. Kumar, G. Subbarayan, JOM 61 (2009) 29-38.

    Article  Google Scholar 

  46. M. Maleki, J. Cugnoni, J. Botsis, Acta Mater. 61 (2013) 103–114.

    Article  Google Scholar 

  47. M. Kerr, N. Chawla, Acta Mater. 52 (2004) 4527–4535.

    Article  Google Scholar 

  48. L. Zhang, L.L. Gao, J. Alloy. Compd. 635 (2015) 55–60.

    Article  Google Scholar 

  49. S. Tan, J. Han, F. Guo, J. Electron. Mater. 47 (2018) 4156–4164.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support received from Yunnan Fundamental Research Projects (Grant No. 202101BC070001-007), the Jiangsu Province Industry-University-Research Cooperation Project (No. BY2022832), and the National Natural Science Foundation of China (No. 52275339).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan-shan Cai or Xiao-jing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Cm., Chen, Sj., Cai, Ss. et al. Microstructure and shear properties evolution of Mn-doped SAC solder joint under isothermal aging. J. Iron Steel Res. Int. 30, 1650–1660 (2023). https://doi.org/10.1007/s42243-023-01027-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01027-y

Keywords

Navigation