Skip to main content
Log in

Detrimental effect of arsenic on hot ductility of copper-bearing steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of As content on the hot ductility of steel with 0.17 wt.% Cu was investigated at 700–1100 °C using a Gleeble-3800 thermal–mechanical simulator. The results showed that increasing the As content from 0 to 0.15 wt.% obviously widened the hot ductility trough and pushed the trough into the high-temperature regime. Meanwhile, when the As content exceeded 0.10 wt.%, significant hot ductility deterioration was found. In the ferrite + austenite two-phase regions of 700–800 °C, the fracture appearance changed from dimple ductile to intergranular ductile or from intergranular ductile to intergranular decohesion with increasing As content. The inhibition formation of proeutectoid ferrite and austenite grain coarsening were responsible for the slight hot ductility deterioration by As in the two-phase region. In the austenite single-phase region above 850 °C, the fracture appearance changed from dimple ductile to intergranular decohesion with increasing As content, especially at 850–950 °C. Suppression of dynamic recrystallization and grain boundary segregation of As resulted in serious damage of the hot ductility and widened the ductility trough in the single-phase region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.T. Nachtrab, Y.T. Chou, J. Mater. Sci. 19 (1984) 2136–2144.

    Article  Google Scholar 

  2. C. Nagasaki, J. Kihara, ISIJ Int. 37 (1997) 523–530.

    Article  Google Scholar 

  3. S. Song, S. Sun, Steel Res. Int. 87 (2016) 1435–1443.

    Article  Google Scholar 

  4. L. Yin, S. Sridhar, Metall. Mater. Trans. B 42 (2011) 1031–1043.

    Article  Google Scholar 

  5. H. Peng, Oxid. Met. 85 (2016) 599–610.

    Article  Google Scholar 

  6. S. Yeşiltepe, M.K. Şeşen, Appl. Sci. 2 (2020) 1–8.

    Google Scholar 

  7. G. Sahoo, M. Deepa, B. Singh, A. Saxena, J. Met. Mater. Miner. 26 (2016) No. 2, 1–11.

    Google Scholar 

  8. W. Xin, B. Song, Z. Yang, Y. Yang, L. Li, ISIJ Int. 56 (2016) 1232–1240.

    Article  Google Scholar 

  9. W.J.M. Salter, J. Iron Steel Inst. 204 (1966) 478–488.

    Google Scholar 

  10. S.H. Song, Z.X. Yuan, J. Jia, D.D. Shen, A.M. Guo, Metall. Mater. Trans. A 34 (2003) 1611–1616.

    Article  Google Scholar 

  11. O. Dremailova, D. Emadi, J.R. Brown, E. Essadiqi, Microsc. Microanal. 10 (2004) 760–761.

    Article  Google Scholar 

  12. H. Matsuoka, K. Osawa, M. Ono, M. Ohmura, ISIJ Int. 37 (1997) 255–262.

    Article  Google Scholar 

  13. W. Xin, J. Zhang, G. Luo, R. Wang, Q. Meng, B. Song, Metall. Res. Technol. 115 (2018) 419.

    Article  Google Scholar 

  14. B. Mintz, ISIJ Int. 39 (1999) 833–855.

    Article  Google Scholar 

  15. Y.H. Sun, Y.N. Zeng, K.K. Cai, J. Iron Steel Res. Int. 21 (2014) 451–458.

    Article  Google Scholar 

  16. C.B. Shi, W.J. Liu, J. Li, L. Yu, Mater. Trans. 57 (2016) 647–653.

    Article  Google Scholar 

  17. K.W. Andrews, J. Iron Steel Inst. 203 (1965) 721–727.

    Google Scholar 

  18. B. Mintz, D.N. Crowther, Int. Mater. Rev. 55 (2010) 168–196.

    Article  Google Scholar 

  19. X.M. Chen, S.H. Song, Z.C. Sun, S.J. Liu, L.Q. Weng, Z.X. Yuan, Mater. Sci. Eng. A 527 (2010) 2725–2732.

    Article  Google Scholar 

  20. H. Cheng, F. Wang, C. Li, Y. Tan, J. Wang, Heat Treat. Met. 35 (2010) 33–38.

    Google Scholar 

  21. L. Xiong, Study of effect of arsenic and lanthanum on properties of high carbon steel, Chongqing University, Chongqing, China, 2017.

    Google Scholar 

  22. A. Cowley, R. Abushosha, B. Mintz, Mater. Sci. Technol. 14 (1998) 1145–1153.

    Article  Google Scholar 

  23. T. Kizu, T. Urabe, ISIJ Int. 49 (2009) 1424–1431.

    Article  Google Scholar 

  24. M. Vedani, D. Dellasega, A. Mannuccii, ISIJ Int. 49 (2009) 446–452.

    Article  Google Scholar 

  25. W.T. Nachtrab, Y.T. Chou, Metall. Trans. A 19 (1988) 1305–1309.

    Article  Google Scholar 

  26. H.B. Peng, W.Q. Chen, L. Chen, D. Guo, High Temp. Mat. Pr. 34 (2014) 19–26.

    Google Scholar 

  27. H.K.D.H. Bhadeshia, D.W. Suh, Ironmak. Steelmak. 42 (2015) 259–267.

    Article  Google Scholar 

  28. J. Wang, M. Enomoto, C. Shang, Acta Mater. 219 (2021) 117260.

    Article  Google Scholar 

  29. Y.Z. Zhu, Z. Zhu, J.P. Xu, Int. J. Miner. Metall. Mater. 19 (2012) 399–403.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51804170, 52104333, and 51874186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Wb., Liang, Yy., Zhang, J. et al. Detrimental effect of arsenic on hot ductility of copper-bearing steel. J. Iron Steel Res. Int. 30, 2043–2054 (2023). https://doi.org/10.1007/s42243-023-00987-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00987-5

Keywords

Navigation