Skip to main content
Log in

A boundary layer model for capture of inclusions by steel–slag interface in a turbulent flow

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A boundary layer model was developed to predict the capture of inclusions by steel–slag interface in a turbulent fluid flow, which is based on the detailed analysis of inclusion trajectories. The effective boundary layer for inclusion removal was proposed by a statistical method. It is noticed that the capture of inclusions by steel–slag interface is not only dependent on the diameter of inclusions but also related to the local turbulent conditions. In high turbulent flow fields, the transport of inclusions is mainly dominated by the turbulent flow, and thus, the effective boundary layer thickness is mainly affected by the level of turbulent kinetic energy and is almost independent of the inclusion diameter. The inertia of inclusions gradually takes over the stochastic effect of turbulent flow, and the effect of inclusion diameter on effective boundary layer thickness becomes more noticeable with the decrease in the level of turbulent kinetic energy. Besides, the effective boundary layer thickness is more susceptible to the inclusion diameter for larger inclusions due to its greater inertia under the same turbulent condition while it principally depends on the level of turbulent kinetic energy for smaller inclusions. As the characteristic velocity increases, the time for inclusions transport and interaction with steel–slag interface decreases, and thus, the effective boundary layer thickness decreases. Moreover, the graphical user interface was developed by using the cubic spline interpolation for ease of coupling the current boundary layer model with the macro-scale model of the a turbulent fluid flow in the metallurgical vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Zhang, B.G. Thomas, ISIJ Int. 43 (2003) 271–291.

    Article  Google Scholar 

  2. L. Zhang, B.G. Thomas, Metall. Mater. Trans. B 37 (2006) 733–761.

    Article  Google Scholar 

  3. E.A. Chichkarev, Metallurgist 54 (2010) 236–243.

    Article  Google Scholar 

  4. L. Zhang, JOM 65 (2013) 1138–1144.

    Article  Google Scholar 

  5. W. Lou, M. Zhu, ISIJ Int. 54 (2014) 9–18.

    Article  Google Scholar 

  6. G.J. Chen, S. He, Y. Li, Q. Wang, Ind. Eng. Chem. Res. 55 (2016) 7030–7042.

    Article  Google Scholar 

  7. Q. Cao, L. Nastac, Ironmak. Steelmak. 45 (2018) 984–991.

    Article  Google Scholar 

  8. H. Duan, Y. Ren, L. Zhang, JOM 70 (2018) 2128–2138.

    Article  Google Scholar 

  9. H. Duan, L. Zhang, B.G. Thomas, A.N. Conejo, Metall. Mater. Trans. B 49 (2018) 2722–2743.

    Article  Google Scholar 

  10. G. Chen, S. He, JOM 71 (2019) 4206–4214.

    Article  Google Scholar 

  11. H. Duan, Y. Ren, B.G. Thomas, L. Zhang, Metall. Mater. Trans. B 50 (2019) 36–41.

    Article  Google Scholar 

  12. H. Duan, Y. Ren, L. Zhang, Metall. Mater. Trans. B 50 (2019) 16–21.

    Article  Google Scholar 

  13. H. Duan, Y. Ren, L. Zhang, Chem. Eng. Sci. 196 (2019) 14–24.

    Article  Google Scholar 

  14. H. Duan, P.R. Scheller, Y. Ren, L. Zhang, JOM 71 (2019) 69–77.

    Article  Google Scholar 

  15. L. Zhang, Q. Ren, H. Duan, Y. Ren, W. Chen, G. Cheng, W. Yang, S. Sridhar, Miner. Process. Extr. Metall. 129 (2020) 184–206.

    Google Scholar 

  16. J. Wang, L. Zhang, Y. Zhang, Q. Ren, H. Duan, Metall. Mater. Trans. B 52 (2021) 2831–2836.

    Article  Google Scholar 

  17. Z. Hu, H. Duan, L. Zhang, Metall. Mater. Trans. B 53 (2022) 1339–1343.

    Article  Google Scholar 

  18. L. Zhang, S. Taniguchi, K. Cai, Metall. Mater. Trans. B 31 (2000) 253–266.

    Article  Google Scholar 

  19. M. Söder, P. Jönsson, L. Jonsson, Steel Res. Int. 75 (2004) 128–138.

    Article  Google Scholar 

  20. H. Ling, F. Li, L. Zhang, A.N. Conejo, Metall. Mater. Trans. B 47 (2016) 1950–1961.

    Article  Google Scholar 

  21. D.Y. Sheng, M. Söder, P. Jönsson, L. Jonsson, Scand. J. Metall. 31 (2002) 134–147.

    Article  Google Scholar 

  22. L.T. Wang, Q.Y. Zhang, S.H. Peng, Z.B. Li, ISIJ Int. 45 (2005) 331–337.

    Article  Google Scholar 

  23. Y. Kwon, J. Zhang, H. Lee, ISIJ Int. 48 (2008) 891–900.

    Article  Google Scholar 

  24. V. De Felice, I.L.A. Daoud, B. Dussoubs, A. Jardy, J.P. Bellot, ISIJ Int. 52 (2012) 1273–1280.

    Article  Google Scholar 

  25. J.P. Bellot, V. Descotes, A. Jardy, JOM 65 (2013) 1164–1172.

    Article  Google Scholar 

  26. W. Lou, M. Zhu, Metall. Mater. Trans. B 44 (2013) 762–782.

    Article  Google Scholar 

  27. J.P. Bellot, V. De Felice, B. Dussoubs, A. Jardy, S. Hans, Metall. Mater. Trans. B 45 (2014) 13–21.

    Article  Google Scholar 

  28. J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1597–1606.

    Article  Google Scholar 

  29. J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1838–1847.

    Article  Google Scholar 

  30. M. Valdez, K. Prapakorn, A.W. Cramb, S. Seetharaman, Steel Res. 72 (2001) 291–297.

    Article  Google Scholar 

  31. M. Valdez, K. Prapakorn, A.W. Cramb, S. Sridhar, Ironmak. Steelmak. 29 (2002) 47–52.

    Article  Google Scholar 

  32. M. Valdez, G.S. Shannon, S. Sridhar, ISIJ Int. 46 (2006) 450–457.

    Article  Google Scholar 

  33. S. Yang, J. Li, C. Liu, L. Sun, H. Yang, Metall. Mater. Trans. B 45 (2014) 2453–2463.

    Article  Google Scholar 

  34. C. Liu, S. Yang, J. Li, L. Zhu, X. Li, Metall. Mater. Trans. B 47 (2016) 1882–1892.

    Article  Google Scholar 

  35. D. Bouris, G. Bergeles, Metall. Mater. Trans. B 29 (1998) 641–649.

    Article  Google Scholar 

  36. G. Shannon, L. White, S. Sridhar, Mater. Sci. Eng. A 495 (2008) 310–315.

    Article  Google Scholar 

  37. Y. Chung, A.W. Cramb, Metall. Mater. Trans. B 31 (2000) 957–971.

    Article  Google Scholar 

  38. J.C. Cao, Y. Li, W. Lin, J. Che, F. Zhou, Y. Tan, D. Li, J. Dang, C. Chen, Crystals 13 (2023) 202.

    Google Scholar 

  39. C. Chen, P. Ni, L.T.I. Jonsson, A. Tilliander, G. Cheng, P.G. Jönsson, Metall. Mater. Trans. B 47 (2016) 1916–1932.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Natural Science Foundation of China (Grant Nos. 51904025 and U22A20171), the Fundamental Research Funds for the Central Universities (Grant No. FRF-IDRY-20-011), National Postdoctoral Program for Innovative Talents (Grant No. BX20190030), and the High Steel Center (HSC) at North China University of Technology and University of Science and Technology Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao-jian Duan or Li-feng Zhang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Yp., Duan, Hj. & Zhang, Lf. A boundary layer model for capture of inclusions by steel–slag interface in a turbulent flow. J. Iron Steel Res. Int. 30, 1101–1108 (2023). https://doi.org/10.1007/s42243-023-00957-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00957-x

Keywords

Navigation