Skip to main content
Log in

Numerical simulation of fluid flow and alloy melting in RH process for electrical steels

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Based on the Eulerian–Lagrangian approach, a mathematical model was established to describe the gas–liquid flow behavior in the Ruhrstahl–Heraeus (RH) degasser. The momentum source and the turbulent kinetic energy source due to the motion of gas bubbles were considered for the liquid flow. The effect of the expansion of gas bubbles on the liquid velocity, recirculation rate, and mixing time was quantitatively evaluated. After the fluid flow reached the steady state, the melting and mixing processes of aluminum alloys in the RH degasser were also investigated. The results indicate that the expansion of gas bubbles has a significant influence on the recirculation rate and the mixing time in the RH process. Increasing the superheat of liquid steel and decreasing the initial diameter of alloy particles are beneficial to promote the melting and mixing of alloy particles. Due to the existence of solidified steel shells, the maximum diameter of the alloy particle is about 1.5 times its initial diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. Kuwabara, K. Umezawa, K. Mori, H. Watanabe, Trans. ISIJ 28 (1988) 305–314.

    Article  Google Scholar 

  2. Y. Kato, H. Nakato, T. Fujii, S. Ohmiya, S. Takatori, ISIJ Int. 33 (1993) 1088–1094.

    Article  Google Scholar 

  3. M. Takahashi, H. Matsumoto, T. Saito, ISIJ Int. 35 (1995) 1452–1458.

    Article  Google Scholar 

  4. J.M. Zhang, L. Liu, X.Y. Zhao, S.W. Lei, Q.P. Dong, ISIJ Int. 54 (2014) 1560–1569.

    Article  Google Scholar 

  5. Y.G. Park, W.C. Doo, K.W. Yi, S.B. An, ISIJ Int. 40 (2000) 749–755.

    Article  Google Scholar 

  6. Y.G. Park, K.W. Yi, S.B. Ahn, ISIJ Int. 41 (2001) 403–409.

    Article  Google Scholar 

  7. J.H. Wei, H.T. Hu, Steel Res. Int. 77 (2006) 32–36.

    Article  Google Scholar 

  8. P.A. Kishan, S.K. Dash, ISIJ Int. 49 (2009) 495–504.

    Article  Google Scholar 

  9. H.P. Liu, Z.Y. Qi, M.G. Xu, Steel Res. Int. 82 (2011) 440–458.

    Article  Google Scholar 

  10. H.T. Ling, F. Li, L.F. Zhang, A.N. Conejo, Metall. Mater. Trans. B 47 (2016) 1950–1961.

    Article  Google Scholar 

  11. Y.G. Park, K.W. Yi, ISIJ Int. 43 (2003) 1403–1409.

    Article  Google Scholar 

  12. H.T. Ling, L.F. Zhang, Metall. Mater. Trans. B 49 (2018) 2709–2721.

    Article  Google Scholar 

  13. K. Shirabe, J. Szekely, Trans. ISIJ 23 (1983) 465–474.

    Article  Google Scholar 

  14. Y. Miki, Y. Shimada, B.G. Thomas, A. Denissov, Iron Steelmak. 24 (1997) 31–38.

    Google Scholar 

  15. D.Q. Geng, J.X. Zheng, K. Wang, P. Wang, R.Q. Liang, H.T. Liu, H. Lei, J.C. He, Metall. Mater. Trans. B 46 (2015) 1484–1493.

    Article  Google Scholar 

  16. G.J. Chen, S.P. He, Y.G. Li, Metall. Mater. Trans. B 48 (2017) 2176–2186.

    Article  Google Scholar 

  17. J.J.M. Peixoto, W.V. Gabriel, T.A.S. de Oliveira, C.A. da Silva, I.A. da Silva, V. Seshadri, Metall. Mater. Trans. B 49 (2018) 2421–2434.

    Article  Google Scholar 

  18. L.Y. Zhang, F. Oeters, Steel Res. 70 (1999) 128–134.

    Article  Google Scholar 

  19. H.J. Duan, L.F. Zhang, B.G. Thomas, A.N. Conejo, Metall. Mater. Trans. B 49 (2018) 2722–2743.

    Article  Google Scholar 

  20. B.E. Launder, D.B. Spalding, Lectures in mathematical models of turbulence, Academic Press, England, UK, 1972.

    MATH  Google Scholar 

  21. S.A. Morsi, A.J. Alexander, J. Fluid Mech. 55 (1972) 193–208.

    Article  Google Scholar 

  22. M. Sano, K. Mori, Y. Fujita, Tetsu-to-Hagané 65 (1979) 1140–1148.

    Article  Google Scholar 

  23. H. Anglart, O. Nylund, N. Kurul, M.Z. Podowski, Nucl. Eng. Des. 177 (1997) 215–228.

    Article  Google Scholar 

  24. D.A. Drew, R.T. Lahey, Int. J. Multiphas. Flow 13 (1987) 113–121.

    Article  Google Scholar 

  25. H.T. Ling, L.F. Zhang, Metall. Mater. Trans. B 50 (2019) 2017–2028.

    Article  Google Scholar 

  26. S. Whitaker, AIChE J. 18 (1972) 361–371.

    Article  Google Scholar 

  27. L.Y. Zhang, Steel Res. 67 (1996) 466–474.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the Open Fund of Anhui Province Key Laboratory of Metallurgical Engineering & Resources Recycling (Anhui University of Technology) (SKF21-05), the Open Fund of State Key Laboratory of New technology of Iron and Steel Metallurgy (KF21-03), and the National Natural Science Foundation of China (Grant Nos. 51704005 and 51804003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-tao Ling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hj., Xu, R., Ling, Ht. et al. Numerical simulation of fluid flow and alloy melting in RH process for electrical steels. J. Iron Steel Res. Int. 29, 1423–1433 (2022). https://doi.org/10.1007/s42243-022-00752-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00752-0

Keywords

Navigation