Skip to main content
Log in

Effect of tempering on carbides and hydrogen embrittlement in E690 high strength marine structural steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of tempering on carbides and hydrogen embrittlement in E690 high strength marine structural steel has been investigated. The steel was tempered at 600 °C for 1–3 h. Detailed characterization was carried out to characterize the microstructure, especially the dislocation density and grain size. The hydrogen permeation test and thermal desorption spectroscopy test were also implemented. The dislocation density decreases, the amount of carbide increases, and carbides (M23C6 and MX) coarsen with the tempering time increasing. After tempered at 600 °C for 3 h, the diffusible hydrogen trapped by lattice and dislocation decreases while the non-diffusible hydrogen trapped by carbides increases, leading to the best hydrogen embrittlement resistance, although hydrogen diffuses rapidly due to the reduction of dislocation density. And the fracture mode changes from a combination of brittle cleavage and ductile dimpled fracture to fully ductile dimple fracture under hydrogen charging condition. Moreover, a phenomenon that hydrogen accelerates the dislocations movement of the steel during deformation was observed, which is related to the fact that hydrogen enhanced localized plasticity mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.C. Ma, Z.Y. Liu, C.W. Du, H.R. Wang, C.Y. Li, X.G. Li, Mater. Sci. Eng. A 642 (2015) 22–31.

    Article  Google Scholar 

  2. H.K.D.H. Bhadeshia, ISIJ Int. 56 (2016) 24–36.

    Article  Google Scholar 

  3. A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Mater. 60 (2012) 5182–5189.

    Article  Google Scholar 

  4. B.A. Szost, R.H. Vegter, P.E.J. Rivera-Díaz-Del-Castillo, Metall. Mater. Trans. A 44 (2013) 4542–4550.

    Article  Google Scholar 

  5. C. Park, N. Kang, M. Kim, S. Liu, Mater. Lett. 235 (2019) 193–196.

    Article  Google Scholar 

  6. C. Park, N. Kang, S. Liu, Corro. Sci. 128 (2017) 33–41.

    Article  Google Scholar 

  7. L. Li, B. Song, Z. Cai, Z. Liu, X. Cui, Mater. Sci. Eng. A 742 (2019) 712–721.

    Article  Google Scholar 

  8. A. Nagao, K. Hayashi, K. Oi, S. Mitao, ISIJ Int. 52 (2012) 213–221.

    Article  Google Scholar 

  9. H. Fuchigami, H. Minami, M. Nagumo, Phil. Mag. Lett. 86 (2006) 21–29.

    Article  Google Scholar 

  10. E. Quadrini, Mater. Chem. Phys. 15 (1986) 155–165.

    Article  Google Scholar 

  11. M. Nagumo, Met. Sci. Technol. 20 (2004) 940–950.

    Article  Google Scholar 

  12. R.A. Oriani, Annu. Rev. Mater. Sci. 8 (1978) 327–357.

    Article  Google Scholar 

  13. J.P. Hirth, Metall. Trans. A 11 (1980) 861–890.

    Article  Google Scholar 

  14. H.K. Birnbaum, P. Sofronis, Mater. Sci. Eng. A 176 (1994) 191–202.

    Article  Google Scholar 

  15. I.M. Robertson, H.K. Birnbaum, Acta Metall. 34 (1986) 353–366.

    Article  Google Scholar 

  16. J. Von Pezold, L. Lymperakis, J. Neugebeauer, Acta Mater. 59 (2011) 2969–2980.

    Article  Google Scholar 

  17. M. Maxelon, A. Pundt, W. Pyckhout-Hintzen, J. Barker, R. Kirchheim, Acta Mater. 49 (2001) 2625–2634.

    Article  Google Scholar 

  18. K. Takai, H. Shoda, H. Suzuki, M. Nagumo, Acta Mater. 56 (2008) 5158–5167.

    Article  Google Scholar 

  19. K. Sakaki, T. Kawase, M. Hirato, M. Mizuno, H. Araki, Y. Shirai, M. Nagumo, Scripta Mater. 55 (2006) 1031–1034.

    Article  Google Scholar 

  20. P. Zhou, W. Li, X.J. Jin, J. Electrochem. Soc. 164 (2017) D394–D400.

    Article  Google Scholar 

  21. X. Zhu, W. Li, H.S. Zhao, L. Wang, X.J. Jin, Int. J. Hydrogen Energ. 39 (2014) 13031–13040.

    Article  Google Scholar 

  22. M. Koyama, E. Akiyama, Y.K. Lee, D. Raabe, K. Tsuzaki, Int. J. Hydrogen Energ. 42 (2017) 12706–12723.

    Article  Google Scholar 

  23. P.W. Zhou, W. Li, H.S. Zhao, X.J. Jin, Int. J. Hydrogen Energ. 43 (2018) 10905–10914.

    Article  Google Scholar 

  24. Y. Li, W. Li, J.C. Hu, H.M. Song, X.J. Jin, Int. J. Plast. 88 (2017) 53–69.

    Article  Google Scholar 

  25. Z.Y. Liang, X. Wang, W. Huang, M.X. Huang, Acta Mater. 88 (2015) 170–179.

    Article  Google Scholar 

  26. R.A. Renzetti, H.R.Z. Sandim, R.E. Bolmaro, P.A. Suzuki, A. Möslang, Mater. Sci. Eng. A 534 (2012) 142–146.

    Article  Google Scholar 

  27. T. Ungár, A. Borbély, Appl. Phys. Lett. 69 (1996) 3173–3175.

    Article  Google Scholar 

  28. G. Ribárik, T. Ungár, Mater. Sci. Eng. A 528 (2010) 112–121.

    Article  Google Scholar 

  29. T. Ungár, I. Dragomir, A. Borbély, J. Appl. Crystallogr. 32 (1999) 992–1002.

    Article  Google Scholar 

  30. Y.T. Xu, Y.H. Nie, M. Wang, W. Li, X.J. Jin, Acta Mater. 131 (2017) 110–122.

    Article  Google Scholar 

  31. W.Y. Choo, J.Y. Lee, Metall. Trans. A 13 (1982) 135–140.

    Article  Google Scholar 

  32. D.F. Araújo, E.O. Vilar, J. Palma Carrasco, Int. J. Hydrogen Energ. 39 (2014) 12194–12200.

    Article  Google Scholar 

  33. E. Fallahmohammadi, F. Bolzoni, L. Lazzari, Int. J. Hydrogen Energ. 38 (2013) 2531–2543.

    Article  Google Scholar 

  34. R.A. Oriani, Fusion Technol. 26 (1994) 235–266.

    Google Scholar 

  35. Q.Q. Cui, J.S. Wu, D.H. Xie, X.G. Wu, Y.H. Huang, X.G. Li, Materials 10 (2017) 721.

    Article  Google Scholar 

  36. J.X. Xu, C. Yu, H. Lu, Y. Wang, C.L. Luo, G.Y. Xu, J.P. Suo, J. Nucl. Mater. 516 (2019) 135–143.

    Article  Google Scholar 

  37. R. Valentini, A. Solina, S. Matera, P. De Gregorio, Metall. Mater. Trans. A 27 (1996) 3773–3780.

    Article  Google Scholar 

  38. A. Drexler, T. Depover, K. Verbeken, W. Ecker, J. Alloy. Compd. 789 (2019) 647–657.

    Article  Google Scholar 

  39. T. Yokota, T. Shiraga, ISIJ Int. 43 (2003) 534–538.

    Article  Google Scholar 

  40. H.J. Seo, J.N. Kim, J.W. Jo, C.S. Lee, Int. J. Hydrogen Energ. 46 (2021) 19670–19681.

    Article  Google Scholar 

  41. A. Turk, Acta Mater. 194 (2020) 118–133.

    Article  Google Scholar 

  42. T. Neeraj, R. Srinivasan, J. Li, Acta Mater. 60 (2012) 5160–5171.

    Article  Google Scholar 

  43. P. Sofronis, J. Mech. Phys. Solid. 43 (1995) 1385–1407.

    Article  Google Scholar 

  44. P.J. Ferreira, I.M. Robertson, H.K. Birnbaum. Mater. Sci. Forum. 207–209 (1996) 93–96.

    Article  Google Scholar 

  45. Y.Z. Chen, Scripta Mater. 68 (2013) 743–746.

    Article  Google Scholar 

  46. R. Kirchheim, Scripta Mater. 62 (2010) 67–70.

    Article  Google Scholar 

  47. R. Kirchheim, Acta Mater. 55 (2007) 5129–5138.

    Article  Google Scholar 

  48. R. Kirchheim, Acta Mater. 55 (2007) 5139–5148.

    Article  Google Scholar 

  49. P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solid. 58 (2010) 206–226.

    Article  Google Scholar 

  50. M.L. Martin, I.M. Robertson, P. Sofronis, Acta Mater. 59 (2011) 3680–3687.

    Article  Google Scholar 

  51. A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solid. 112 (2018) 403–430.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the generous financial support from National Key R&D Program of China (No. 2016YFB0300601), the National Natural Science Foundation of China (Nos. U1564203, 51831002 and 51571141). The authors also gratefully acknowledge the support sponsored by Program of Shanghai Academic Research Leader 18XD1402200 and provided by Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University. Besides, this research was supported by the TESCAN CHINA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Xue-jun Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Li, W., Zhou, Pw. et al. Effect of tempering on carbides and hydrogen embrittlement in E690 high strength marine structural steel. J. Iron Steel Res. Int. 29, 1669–1682 (2022). https://doi.org/10.1007/s42243-022-00745-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00745-z

Keywords

Navigation