Skip to main content

Advertisement

Log in

Effects of pressure and plastic addition on sticking of fine iron ore particles in fluidized bed reduction

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The adhesion of fine iron ore particles during fluidized bed reduction was studied using pressurized visible fluidized bed laboratory equipment. The results showed that the optimal operating parameters for pure hydrogen reduction under high pressure were reduction temperature of 1073 K, particle size of 0.18–0.66 mm, pure H2 linear velocity of 0.8 m/s, reduction pressure of 200 kPa, and reduction time of 50 min. When plastic particles were mixed into the fluidized bed, the optimal parameters were reduction temperature of 973 K, particle size of 0.18–0.66 mm, pure H2 linear velocity of 0.8 m/s, reduction pressure of 100 kPa, mass content of plastic particles of 8%, and reduction time of 65 min. The chemical reaction resistance is much higher than the inner diffusion resistance at the initial stage of the reaction, whereas, in later stage, the inner diffusion resistance exceeds the chemical reaction resistance. The contact area of iron atoms or iron whiskers gradually decreases with the increase in reduction pressure from 0.20 to 0.45 MPa, and the sticking trend gradually decreases. Adding plastic particles in the fluidized reduction process of fine iron ore can effectively inhibit the adhesion among fine iron ore particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B. Zhang, Z. Wang, X.Z. Gong, Z.C. Guo, ISIJ Int. 53 (2013) 411–418.

    Article  Google Scholar 

  2. L. Guo, J.T. Gao, Y.W. Zhong, Z.C. Guo, ISIJ Int. 55 (2015) 1797–1805.

    Article  Google Scholar 

  3. B. Zhang, X.Z. Gong, Z. Wang, Z.C. Guo, ISIJ Int. 51 (2011) 1403–1409.

    Article  Google Scholar 

  4. M. Yang, W.D. Xiao, X. Yang, P. Zhang, Metals 6 (2016) 93–100.

    Article  Google Scholar 

  5. Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang, J. Mater. Sci. Technol. 34 (2018) 2325–2330.

    Article  Google Scholar 

  6. Q.Y. Xu, Z.P. Li, Z.Z. Liu, J.J. Wang, H.C. Wang, Metals 8 (2018) 525.

    Article  Google Scholar 

  7. K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymański, T. Wiltowski, Int. J. Hydrogen Energy 30 (2005) 1543–1554.

    Article  Google Scholar 

  8. X.L. Dong, Z.D. Zhang, Q.F. Xiao, X.G. Zhao, Y.C. Chuang, S.R. Jin, W.M. Sun, Z.J. Li, Z.X. Zheng, H. Yang, J. Mater. Sci. 33 (1998) 1915–1919.

    Article  Google Scholar 

  9. Y.A. Hui, D.Y. Wang, M.F. Jiang, J. Northeast. Univ. 24 (2003) 828–831.

    Google Scholar 

  10. D.H. Liu, X.Z. Wang, J.L. Zhang, Z.J. Liu, K.X. Jiao, X.L. Liu, R.R. Wang, Metall. Res. Technol. 114 (2017) 611.

    Article  Google Scholar 

  11. Q.Y. Xu, H.C. Wang, Y.K. Fu, J.J. Wang, ISIJ Int. 56 (2016) 1929–1937.

    Article  Google Scholar 

  12. J.F. Gransden, J.S. Sheasby, Can. Metall. Quart. 13 (1974) 649–657.

    Article  Google Scholar 

  13. M. Komatina, H.W. Gudenau, Metalurgija 10 (2004) 309–328.

    Article  Google Scholar 

  14. N.S. Srinivasan, Powder Technol. 124 (2002) 28–39.

    Article  Google Scholar 

  15. T. Mikami, H. Kamiya, M. Horio, Powder Technol. 89 (1996) 231–238.

    Article  Google Scholar 

  16. L. Guo, Y.W. Zhong, J.T. Gao, Z.R. Yang, Z.C. Guo, Powder Technol. 284 (2015) 210–217.

    Article  Google Scholar 

  17. Z.J. Liu, S. Ren, J.L. Zhang, W.J. Liu, X.D. Xing, B.X. Su, J. Iron Steel Res. Int. 19 (2012) No. 10, 30–35.

    Google Scholar 

  18. Q.Y. Xu, Z.Z. Liu, Z.P. Li, J.J. Wang, L. Zhou, Metals 8 (2018) 523.

    Article  Google Scholar 

  19. L. Guo, J.T. Yu, J.K. Tang, Y.H. Lin, Z.C. Guo, H.Q. Tang, J. Iron Steel Res. Int. 22 (2015) 464–472.

    Article  Google Scholar 

  20. K. Kuwagi, T. Mikami, M. Horio, Powder Technol. 109 (2000) 27–40.

    Article  Google Scholar 

  21. J.H. Shao, Research on sticking mechanism and key prevention technology of sticking between particles during reduction of iron ore fines in fluidized bed, University of Science and Technology Beijing, Beijing, China, 2012.

    Google Scholar 

  22. H.D. Wang, L.N. Zhu, B.S. Xu, J. Automot. Mech. Eng. 49 (2013) 1–4.

    Google Scholar 

  23. Q.Y. Xu, Z.P. Li, Z.H. Gu, Molecules 25 (2020) 1810.

    Article  Google Scholar 

  24. G. Matsumura, Acta Metall. 19 (1971) 851–855.

    Article  Google Scholar 

Download references

Acknowledgements

This research was founded by the National Natural Science Foundation of China (No. 51974001) and the University outstanding young talents funding program (No. gxyq2019016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-yan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Qy., Gu, Zh., Li, Zp. et al. Effects of pressure and plastic addition on sticking of fine iron ore particles in fluidized bed reduction. J. Iron Steel Res. Int. 28, 140–151 (2021). https://doi.org/10.1007/s42243-020-00449-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00449-2

Keywords

Navigation