Skip to main content
Log in

Role of carbon in modifying solidification and microstructure of a Ni-based superalloy with high Al and Ti contents

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of carbon ranging from 0.014 to 0.071 wt.% on the solidification and microstructure of a Ni-based superalloy with high Al and Ti contents was studied. The results show that the increase in carbon addition significantly increases the size and volume fraction of MC carbides and promotes the change of their morphology from blocky to elongated shape. However, the carbon addition obviously decreases the size and volume fraction of eutectic (γ + γ′) and reduces η phase and borides formation. The change in carbide characteristics is mainly because of the increasing carbide-forming element and carbides precipitation temperature with the increase in carbon which favors the growth of them along the interdendritic liquid film. MC carbides are formed at an earlier solidification stage than the eutectic (γ + γ′). The increased carbide formation consumes more Ti, which delays and reduces the eutectic (γ + γ′) precipitation. The delay of eutectic (γ + γ′) precipitation leads to a deeper undercooling, which significantly decreases the critical Ti concentration for its precipitation. This, in turn, lowers Ti/Al ratio in residual liquids ahead of the eutectic (γ + γ′) and hence reduces η formation subsequently. B and Zr are slightly enriched in the carbides, which are considered during discussing how carbon influences the eutectic (γ + γ′) precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.C. Reed, The superalloys: fundamentals and applications, Cambridge University Press, New York, USA, 2008.

    Google Scholar 

  2. J. Mao, K.M. Chang, W. Yang, K. Ray, S.P. Vaze, D.U. Ferrer, Metall. Mater. Trans. A 32 (2001) 2441–2452.

    Article  Google Scholar 

  3. C.T. Sims, N.S. Stoloff, W.C. Hagel, Superalloys II, Wiley, New York, USA, 1987.

    Google Scholar 

  4. L. Chang, H. Jin, W. Sun, J. Alloy. Compd. 653 (2015) 266–270.

    Article  Google Scholar 

  5. J. Zhang, R.F. Singer, Metall. Mater. Trans. A 35 (2004) 1337–1342.

    Article  Google Scholar 

  6. G. Zhao, L. Yu, G. Yang, W. Zhang, W. Sun, J. Alloy. Compd. 686 (2016) 194–203.

    Article  Google Scholar 

  7. Y. Xu, Q. Jin, X. Xiao, X. Cao, G. Jia, Y. Zhu, H. Yin, Mater. Sci. Eng. A 528 (2011) 4600–4607.

    Article  Google Scholar 

  8. T.J. Garosshen, T.D. Tillman, G.P. McCarthy, Metall. Trans. A 18 (1987) 69–77.

    Article  Google Scholar 

  9. C.N. Wei, H.Y. Bor, L. Chang, Mater. Sci. Eng. A 527 (2010) 3741–3747.

    Article  Google Scholar 

  10. K.A. Al-Jarba, G.E. Fuchs, Mater. Sci. Eng. A 373 (2004) 255–267.

    Article  Google Scholar 

  11. L.R. Liu, T. Jin, N.R. Zhao, Z.H. Wang, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Lett. 58 (2004) 2290–2294.

    Article  Google Scholar 

  12. J. Chen, J.H. Lee, C.Y. Jo, S.J. Choe, Y.T. Lee, Mater. Sci. Eng. A 247 (1998) 113–125.

    Article  Google Scholar 

  13. J. Yu, X. Sun, N. Zhao, T. Jin, H. Guan, Z. Hu, Mater. Sci. Eng. A 460-461 (2007) 420–427.

    Article  Google Scholar 

  14. Q.Z. Chen, N. Jones, D.M. Knowles, Acta Mater. 50 (2002) 1095–1112.

    Article  Google Scholar 

  15. X.W. Li, L. Wang, J.S. Dong, L.H. Lou, J. Mater. Sci. Technol. 30 (2014) 1296–1300.

    Article  Google Scholar 

  16. B.C. Yan, J. Zhang, L.H. Lou, Mater. Sci. Eng. A 474 (2008) 39–47.

    Article  Google Scholar 

  17. P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, Z.Q. Hu, Trans. Nonferr. Metal. Soc. China 22 (2012) 1594–1598.

    Article  Google Scholar 

  18. Y.L. Tsai, S.F. Wang, H.Y. Bor, Y.F. Hsu, Mater. Sci. Eng. A 607 (2014) 294–301.

    Article  Google Scholar 

  19. P. Keefe, S. Mancuso, G. Maurer, in: Superalloys 1992, TMS, Warrendale, USA, 1992, pp. 487–496.

  20. D. Helm, O. Roder, in: Superalloys 2000, TMS, Warrendale, USA, 2000, pp. 487–493.

  21. G.F. Vander Voort, Metallography: principles and practice, McGraw-Hill Inc., New York, USA, 1984.

  22. R.A. Hobbs, S. Tin, C.M.F. Rae, Metall. Mater. Trans. A 36 (2005) 2761–2773.

    Article  Google Scholar 

  23. X. Huang, Y. Zhang, Y. Liu, Z. Hu, Metall. Mater. Trans. A 28 (1997) 2143–2147.

    Article  Google Scholar 

  24. G. Du, J. Li, Z.B. Wang, Metall. Mater. Trans. B 48 (2017) 2873–2890.

    Article  Google Scholar 

  25. B. Ozturk, R.J. Fruehan, Metall. Trans. B 21 (1990) 879–884.

    Article  Google Scholar 

  26. G. Meetham, Met. Technol. 11 (1984) 414–418.

    Article  Google Scholar 

  27. S. Seo, I. Kim, J. Lee, C. Jo, H. Miyahara, K. Ogi, Metall. Mater. Trans. A 38 (2007) 883–893.

    Article  Google Scholar 

  28. G.D. Zhao, L.X. Yu, F. Qi, F. Liu, W.R. Sun, Z.Q. Hu, Acta Metall. Sin. (Engl. Lett.) 29 (2016) 518–526.

    Article  Google Scholar 

  29. Y. Murata, N. Yukawa, Scripta Metall. 20 (1986) 693–696.

    Article  Google Scholar 

  30. M. Mostafaei, S.M. Abbasi, J. Alloy. Compd. 648 (2015) 1031–1037.

    Article  Google Scholar 

  31. S. Kheirandish, A. Noorian, J. Iron Steel Res. Int. 15 (2008) No. 4, 61–66.

    Google Scholar 

  32. W. Kurz, D.J. Fisher, Fundamentals of solidification, Trans. Tech. Publications, 1989.

  33. R.T. Holt, W. Wallace, Int. Met. Rev. 21 (1976) 1–24.

    Article  Google Scholar 

  34. B.P. Wu, L.H. Li, J.T. Wu, Z. Wang, Y.B. Wang, X.F. Chen, J.X. Dong, J.T. Li, Int. J. Miner. Metall. Mater. 21 (2014) 1120–1126.

    Article  Google Scholar 

  35. C. Cui, Y. Gu, D. Ping, H. Harada, T. Fukuda, Mater. Sci. Eng. A 485 (2008) 651–656.

    Article  Google Scholar 

  36. C.Y. Cui, A. Sato, Y.F. Gu, D.H. Ping, H. Harada, Metall. Mater. Trans. A 37 (2006) 3183–3190.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 51904146 and U1960203) and the Doctor Start-up Fund of Liaoning Province (Grant No. 2019-BS-125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-di Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Gd., Zang, Xm. & Sun, Wr. Role of carbon in modifying solidification and microstructure of a Ni-based superalloy with high Al and Ti contents. J. Iron Steel Res. Int. 28, 98–110 (2021). https://doi.org/10.1007/s42243-020-00408-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00408-x

Keywords

Navigation