Skip to main content
Log in

Nanoscratching and mechanical behaviors of high-entropy alloys with different phase constituents

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) exhibit unique microstructural features and properties in nanoscale and atomic scale because of their multi-element alloy system. The nanoscratching behaviors of three HEAs with different phase constituents, relative to the microstructure and mechanical properties of the HEAs, were investigated. Three typical phase constituents were selected: face-centered cubic (FCC) structure, body-centered cubic (BCC) structure, and a dual-phase structure containing both FCC and BCC phases. Despite the fact that the FCC alloy has the highest ductility and strain hardening capability, it exhibited inferior scratch resistance due to the over-softening of hardness. Due to the brittle failure mode, the BCC alloy hardly exhibited desirable scratch resistance despite its highest hardness. By contrast, the nanostructured dual-phase alloy exhibited the best scratch resistance because of its good combination of strength and ductility, as well as the ductile failure mode. This research suggests that the HEA with structure comprising nanoscale hard and soft phases is desirable for nanoscratch resistance, and possesses appropriate hardness for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299–303.

    Google Scholar 

  2. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44–51.

    Article  Google Scholar 

  3. J. Joseph, N. Stanford, P. Hodgson, D.M. Fabijanic, J. Alloy. Compd. 726 (2017) 885–895.

    Article  Google Scholar 

  4. Y. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.H. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci. Rep. 4 (2014) 6200.

    Article  Google Scholar 

  5. Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, T.J. Li, Acta Mater. 124 (2017) 143–150.

    Article  Google Scholar 

  6. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153–1158.

    Article  Google Scholar 

  7. Z.J. Zhang, M.M. Mao, J.W. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6 (2015) 10143.

    Article  Google Scholar 

  8. Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, T. Duval, Corros. Sci. 47 (2005) 2679–2699.

    Article  Google Scholar 

  9. H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh, Mater. Sci. Eng. B 163 (2009) 184–189.

    Article  Google Scholar 

  10. Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, J. Alloy. Compd. 488 (2009) 57–64.

    Article  Google Scholar 

  11. Y. Wang, Y. Yang, H. Yang, M. Zhang, J. Qiao, J. Alloy. Compd. 725 (2017) 365–372.

    Article  Google Scholar 

  12. A. Zhang, J. Han, B. Su, J. Meng, J. Alloy. Compd. 725 (2017) 700–710.

    Article  Google Scholar 

  13. T.M. Smith, M.S. Hooshmand, B.D. Esser, F. Otto, D.W. McComb, E.P. George, M. Ghazisaeidi, M.J. Mills, Acta Mater. 110 (2016) 352–363.

    Article  Google Scholar 

  14. H. Diao, L.J. Santodonato, Z. Tang, T. Egami, P.K. Liaw, JOM 67 (2015) 2321–2325.

    Article  Google Scholar 

  15. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187–196.

    Article  Google Scholar 

  16. X.D. Xu, P. Liu, S. Guo, A. Hirata, T. Fujita, T.G. Nieh, C.T. Liu, M.W. Chen, Acta Mater. 84 (2015) 145–152.

    Article  Google Scholar 

  17. Z. Wang, J. Li, Q. Fang, B. Liu, L. Zhang, Appl. Surf. Sci. 416 (2017) 470–481.

    Article  Google Scholar 

  18. D. Wu, J.S.C. Jang, T.G. Nieh, Intermetallics 68 (2016) 118–127.

    Article  Google Scholar 

  19. Z. Wang, S. Guo, Q. Wang, Z. Liu, J. Wang, Y. Yang, C.T. Liu, Intermetallics 53 (2014) 183–186.

    Article  Google Scholar 

  20. C. Zhu, Z.P. Lu, T.G. Nieh, Acta Mater. 61 (2013) 2993–3001.

    Article  Google Scholar 

  21. Y. Huang, Y.L.Chiu, J. Shen, Y. Sun, J.J.J. Chen, Intermetallics 18 (2010) 1056–1061.

    Article  Google Scholar 

  22. J.J. Zhang, T. Sun, Y.D. Yan, Y. Liang, Mater. Sci. Eng. A 505 (2009) 65–69.

    Article  Google Scholar 

  23. A.M. Hodge, T.G. Nieh, Intermetallics 12 (2004) 741–748.

    Article  Google Scholar 

  24. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375–377 (2004) 213–218.

    Article  Google Scholar 

  25. S. Guo, C.T. Liu, Prog. Nat. Sci. Mater. Int. 21 (2011) 433–446.

    Article  Google Scholar 

  26. J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T Shun, C.H. Tsau, S.Y. Chang, Metall. Mater. Trans. A 35 (2004) 2533–2536.

    Article  Google Scholar 

  27. D.H. Lee, I.C. Choi, M.Y. Seok, J. He, Z. Lu, J.Y. Suh, M. Kawasaki, T.G. Langdon, J. Jang, J. Mater. Res. 30 (2015) 2804–2815.

    Article  Google Scholar 

  28. Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G. Wang, G. Zhao, F. Yang, P.K. Liaw, Mater. Sci. Eng. A 647 (2015) 229–240.

    Article  Google Scholar 

  29. C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, H.C. Chen, Mater. Lett. 61 (2007) 1–5.

    Article  Google Scholar 

  30. J.H. Hollomon, Trans. AIME 162 (1945) 268–290.

    Google Scholar 

  31. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A 36 (2005) 1263–1271.

    Article  Google Scholar 

  32. A. Dalmau, W. Rmili, D. Joly, C. Richard, A. Igual-Muňoz, Tribol. Lett. 56 (2014) 517–529.

    Article  Google Scholar 

  33. X. Xu, S. Zwaag, W. Xu, Wear 348–349 (2016) 148–157.

    Article  Google Scholar 

  34. A. Ball, Wear 91 (1983) 201–207.

    Article  Google Scholar 

  35. X. Xu, S. Zwaag, W. Xu, Wear 348–349 (2016) 80–88.

    Google Scholar 

  36. X. Xu, W. Xu, F.H. Ederveen, S. Zwaag, Wear 301 (2013) 89–93.

    Article  Google Scholar 

  37. P.J. Mutton, J.D. Watson, Wear 48 (1978) 385–398.

    Article  Google Scholar 

  38. A.K. Jha, B.K. Prasad, O.P. Modi, S. Das, A.H. Yegneswaran, Wear 254 (2003) 120–128.

    Article  Google Scholar 

  39. F. Katsuki, K. Watari, H. Tahira, M. Umino, Wear 264 (2008) 331–336.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports from the Defense Industrial Technology Development Program (No. JCKY2018407C008), the National Natural Science Foundation of China (NSFC) (Grant Nos. 51304061 and 51474092), and the NCST Science Fund for Distinguished Young Scholars (No. JQ201702).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang-li Ning or Qi-bo Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Jl., Feng, Yl., Li, Xd. et al. Nanoscratching and mechanical behaviors of high-entropy alloys with different phase constituents. J. Iron Steel Res. Int. 26, 1240–1248 (2019). https://doi.org/10.1007/s42243-019-00329-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00329-4

Keywords

Navigation