Skip to main content

Advertisement

Log in

Hot working process optimization of Fe–20Mn–19Cr–0.5C–0.6N steel by activation energy, power dissipation and microstructural evolution

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Hot deformation behavior of an Fe–20Mn–19Cr–0.5C–0.6N high-nitrogen austenitic steel has been studied by isothermal compression tests in deformation temperature range of 800–1200 °C and strain rate range of 0.01–10 s−1. Results indicate that the Fe–20Mn–19Cr–0.5C–0.6N steel has high deformation resistance due to strong hindering effect on dislocation moving by nitrogen-induced lattice misfit. The twinning-induced plasticity effect is gradually suppressed with the increase in deformation temperature, and high-temperature plastic deformation mechanism by twinning is gradually replaced by dislocation planar slip. The deformation resistance is up to 343 MPa at deformation conditions of (1000 °C, 0.01 s−1), which is over 100 MPa higher than that in martensitic steel and 50 MPa higher than that in austenitic steel. Besides, value of deformation activation energy for the Fe–20Mn–19Cr–0.6N steel is up to 784 kJ mol−1. Power dissipation efficiency is lower than 0.13, while hot processing map exhibits a very wide range of working area. The optimum hot working process obtains at deformation temperature range of 950–1200 °C and strain rate range of 0.01–10 s−1, when deformation activation energy is less than 662.6 kJ mol−1, power dissipation efficiency exceeds 0.22, dynamic recrystallization fraction is over 46.1% and microstructures are without instable characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.G. Gavriljuk, H. Berns, High nitrogen steels, Springer, Berlin, Germany, 1999, pp. 236–319.

    Book  Google Scholar 

  2. F.Y. Dong, P. Zhang, J.C. Pang, Y.B. Ren, K. Yang, Z.F. Zhang, Scripta Mater. 96 (2015) 5–8.

    Article  Google Scholar 

  3. W. Wang, S.T. Wang, K. Yang, Y.Y. Shan, Mater. Des. 30 (2009) 3436–3443.

    Article  Google Scholar 

  4. C.M. Hong, J. Shi, L.Y. Sheng, W.C. Cao, W.J. Hui, H. Dong, Mater. Des. 32 (2011) 3711–3717.

    Article  Google Scholar 

  5. A.D. Schino, J.M. Kenny, Mater. Lett. 57 (2003) 1830–1834.

    Article  Google Scholar 

  6. T.H. Lee, C.S. Oh, S.J. Kim, S. Takaki, Acta Mater. 55 (2007) 3649–3662.

    Article  Google Scholar 

  7. A. Weisbrodt-Reisch, M. Brummer, B. Hadler, B. Wolbank, E.A. Werner, Mater. Sci. Eng. A 416 (2006) 1–10.

    Article  Google Scholar 

  8. G.X. Sun, Y. Zhang, S.C. Sun, J.J. Hu, Z.H. Jiang, C.T. Ji, J.S. Lian, Mater. Sci. Eng. A 662 (2016) 432–442.

    Article  Google Scholar 

  9. L.Y. Ping, Z. Yong, R. Fan, C.H. Tao, W.Y. Qing, S. Jie, J. Iron Steel Res. Int. 17 (2010) No. 10, 45–49.

    Article  Google Scholar 

  10. D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri, S. Sarma, Mater. Sci. Eng. A 598 (2014) 368–375.

    Article  Google Scholar 

  11. H. Feng, Z.H. Jiang, H.B. Li, W.C. Jiao, X.X. Li, H.C. Zhu, S.C. Zhang, B.B. Zhang, M.H. Cai, Steel Res. Int. 87 (2017) 1700149.

    Article  Google Scholar 

  12. Y.Q. Weng, Ultra-fine grained steels, Springer, Berlin, Germany, 2003.

    Google Scholar 

  13. H. Ziegler, Progress in solid mechanics, Wiley, New York, USA, 1963.

    Google Scholar 

  14. H.J. McQueen, N.D. Ryan, Mater. Sci. Eng. A 322 (2002) 43–63.

    Article  Google Scholar 

  15. C.M. Sellars, W.J. McTegart, Acta Mater. 14 (1966) 1136–1138.

    Article  Google Scholar 

  16. Y.V.R.K. Prasad, T. Seshacharyulu, Int. Mater. Rev. 43 (1998) 243–258.

    Article  Google Scholar 

  17. S.V. Sajadifar, G.G. Yapici, M. Ketabchi, B. Bemanizadeh, J. Iron Steel Res. Int. 20 (2013) No. 12, 133–139.

    Article  Google Scholar 

  18. L.L. Wang, R.B. Li, Y.G. Liao, M. Jin, Mater. Sci. Eng. A 567 (2013) 84–88.

    Article  Google Scholar 

  19. W.H. Zhang, S.H. Sun, D.L. Zhao, B.Z. Wang, Z.H. Wang, W.T. Fu, Mater. Des. 32 (2011) 4173–4179.

    Article  Google Scholar 

  20. D. Samantaray, S. Mandal, C.N. Athreya, A.K. Bhaduri, Mater. Sci. Eng. A 528 (2011) 8565–8572.

    Article  Google Scholar 

  21. Y.L. Fang, Z.Y. Liu, H.M. Song, L.Z. Jiang, Mater. Sci. Eng. A 526 (2009) 128–133.

    Article  Google Scholar 

  22. D. Li, Y.R. Feng, Z.F. Yin, F. Shou. S. Guan, K. Wang, Q. Liu, F. Hu, Mater. Sci. Eng. A 528 (2011) 8084–8089.

  23. J.Q. Zhang, H.S. Di, K. Mao, X.Y. Wang, Z.J. Han, T.J. Ma, Mater. Sci. Eng. A 587 (2013) 110–122.

    Article  Google Scholar 

  24. L.M. Kaputkina, V.G. Prokoshkina, O.V. Kviat, H. Dyja, J. Siwka, J. Wiedermann, J. Mater. Process. Technol. 125 (2002) 188–192.

    Article  Google Scholar 

  25. L. Chen, Y.J. Zhang, F. Li, X.A. Liu, B.F. Guo, M. Jin, Mater. Sci. Eng. A 663 (2016) 141–150.

    Article  Google Scholar 

  26. J.Q. Zhang, H.S. Di, H.G. Wang, K. Mao, T.J. Ma, Y. Cao, J. Mater Sci. 47 (2012) 4000–4011.

    Article  Google Scholar 

  27. C.J. Shi, W.M. Mao, X.G. Chen, Mater. Sci. Eng. A 571 (2013) 83–91.

    Article  Google Scholar 

  28. Y.S. Kim, S.M. Nam, S.J. Kim, J. Mater. Process. Technol. 187–188 (2007) 575–577.

    Article  Google Scholar 

  29. N.D. Ryan, H.J. McQueen, J. Mater. Process. Technol. 21 (1990) 177–199.

    Article  Google Scholar 

  30. J. Liu, G.W. Fan, P. Han, J.S. Liu, J.Q. Gao, J.F. Yang, Mater. Sci. Forum 620–622 (2009) 161–164.

    Article  Google Scholar 

  31. L. Wang, F. Liu, J.J. Cheng, Q. Zuo, C.F. Chen, J. Alloy. Compd. 623 (2015) 69–78.

    Article  Google Scholar 

  32. N. Cabanãs, J. Penning, N. Akdut, B. De Cooman, Metall. Mater. Trans. A 37 (2006) 3305–3315.

    Article  Google Scholar 

  33. D. Ponge, G. Gottstein, Acta Mater. 46 (1998) 69–80.

    Article  Google Scholar 

  34. G. Gottstein, M. Frommert, M. Goerdeler, N. Schäfer, Mater. Sci. Eng. A 387–389 (2004) 604–608.

    Article  Google Scholar 

  35. H.J. Wang, B. Fu, L. Xiang, Z. Rong, S.T. Qiu, J. Iron Steel Res. Int. 23 (2016) 1080–1085.

    Article  Google Scholar 

  36. K.J. Irvine, T. Gladman, F.B. Pickering, J. Iron Steel Inst. 207 (1969) 1017–1028.

    Google Scholar 

  37. K.A. Babu, S. Mandal, A. Kumar, C.N. Athreya, B.D. Boer, V.S. Sarma, Mater. Sci. Eng. A 664 (2016) 177–187.

    Article  Google Scholar 

  38. S. Mandal, A.K. Bhaduri, V.S. Sarma, Metal. Mater. Trans. A 43 (2012) 2056–2068.

    Article  Google Scholar 

  39. J. Favre, Y. Koizumi, A. Chiba, D. Fabregue, E. Maire, Metal. Mater. Trans. A 44 (2013) 2819–2830.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) under project No. 51301042. The authors would like to thank Dr. Nan Li of Central Iron and Steel Research Institute (CISRI) for the help of isothermal compression tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-du Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Md., Shi, J., Yu, Wc. et al. Hot working process optimization of Fe–20Mn–19Cr–0.5C–0.6N steel by activation energy, power dissipation and microstructural evolution. J. Iron Steel Res. Int. 26, 856–865 (2019). https://doi.org/10.1007/s42243-019-00279-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00279-x

Keywords

Navigation