Skip to main content

Advertisement

Log in

Effect of heat treatment on cyclic deformation properties of Fe–26Mn–10Al–C steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Fully reversed tensile–compression low-cycle fatigue tests were performed at room temperature under strain amplitude of 0.4%. The monotonic tensile results show that Fe–26Mn–10Al–C steels are fully austenite and the optimal combination of ultimate tensile strength and total elongation was present at 950 °C with 65 GPa %. The fatigue results show that the specimen at 1050 °C has the maximum fatigue life of 162,000 cycles, which is much longer than twinning-induced plasticity (TWIP) steels of the same strain amplitude. The hot-forging specimen shows high similarity with TWIP steels with rapid initial cyclic hardening followed by cyclic softening and cyclic saturation. After solution heat treatment, it is noteworthy that, after rapid initial cyclic softening, another rapid cyclic hardening and a following decrease with fluctuation were observed at 1000 °C. It is reasonable to believe that it is caused by κ-carbides precipitated during cyclic deformation. Another interesting phenomenon is cyclic stress subsidence observed at 1050 °C during its saturation stage at the last quarter of the fatigue life, and the span is about 12.5% of whole fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Kim, D.W. Suh, N.J. Kim, Sci. Technol. Adv. Mater. 14 (2013) 1–11.

    Article  Google Scholar 

  2. A. Etienne, V. Massardier-Jourdan, S. Cazottes, X. Garat, M. Soler, I. Zuazo, X. Kleber, Metall. Mater. Trans. A 45 (2013) 324–334.

    Article  Google Scholar 

  3. A.C. Agudelo, J.F. Marco, J.R. Gancedo, G.A. Pérez-Alcázar, Hyperfine Interact. 139 (2002) 141–152.

    Article  Google Scholar 

  4. S.G. Peng, R.B. Song, T. Sun, Z.Z. Pei, C.H. Cai, Y.F. Feng, Z.D. Tan, Tribol. Lett. 64 (2016) 13.

    Article  Google Scholar 

  5. S.G. Peng, R.B. Song, Z.D. Tan, C.H. Cai, K. Guo, Z.H. Wang, J. Iron Steel Res. Int. 23 (2016) 857–866.

    Article  Google Scholar 

  6. G. Frommeyer, U. Brux, P. Neumann, ISIJ Int. 43 (2003) 438–446.

    Article  Google Scholar 

  7. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387–389 (2004) 158–162.

    Article  Google Scholar 

  8. X. Tian, H. Li, Y.S. Zhang, J. Mater. Sci. 43 (2008) 6214–6222.

    Article  Google Scholar 

  9. H. Ding, H.Y. Li, Z.Q. Wu, M.L. Huang, H.Z. Li, Q.B. Xin, Steel Res. Int. 84 (2013) 1288–1293.

    Article  Google Scholar 

  10. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, J.E. Wittig, Acta Mater. 100 (2015) 178–190.

    Article  Google Scholar 

  11. O.A. Zambrano, J. Eng. Mater Technol. 138 (2016) 041010.

    Article  Google Scholar 

  12. G. Frommeyer, U. Brüx, Steel Res. Int. 77 (2006) 627–633.

    Article  Google Scholar 

  13. J.D. Yoo, K.T. Park, Mater. Sci. Eng. A 496 (2008) 417–424.

    Article  Google Scholar 

  14. J.D. Yoo, S.W. Hwang, K.T. Park, Metall. Mater. Trans. A 40 (2009) 1520–1523.

    Article  Google Scholar 

  15. X.F. Zhang, H. Yang, D.P. Leng, L. Zhang, Z.Y. Huang, G. Chen, J. Iron Steel Res. Int. 23 (2016) 963–972.

    Article  Google Scholar 

  16. K.T. Park, Scripta Mater. 68 (2013) 375–379.

    Article  Google Scholar 

  17. M.C. Ha, J.M. Koo, J.K. Lee, S.W. Hwang, K.T. Park, Mater. Sci. Eng. A 586 (2013) 276–283.

    Article  Google Scholar 

  18. R.C. Xu, Y.L. He, H. Jiang, H. Wang, N.Q. Zhu, X.G. Lu, L. Li, J. Iron Steel Res. Int. 24 (2017) 737–742.

    Article  Google Scholar 

  19. H. Ding, D. Han, Z.H. Cai, Z.Q. Wu, JOM 66 (2014) 1821–1827.

    Article  Google Scholar 

  20. W.W. Song, W. Zhang, J. von Appen, R. Dronskowski, W. Bleck, Steel Res. Int. 86 (2015) 1161–1169.

    Article  Google Scholar 

  21. M.S. Kim, Y.B. Kang, J. Phase Equilib. Diff. 36 (2015) 453–470.

    Article  Google Scholar 

  22. J. Yoo, B. Kim, Y. Park, C. Lee, J. Mater. Sci. 50 (2015) 279–286.

    Article  Google Scholar 

  23. A. Mohamadizadeh, A. Zarei-Hanzaki, A. Kisko, D. Porter, Mater. Des. 92 (2016) 322–329.

    Article  Google Scholar 

  24. Y.P. Li, R.B. Song, E.D. Wen, F.Q. Yang, Acta Metall. Sin (Engl. Lett.) 29 (2016) 441–449.

    Article  Google Scholar 

  25. S.Y. Han, S.Y. Shin, H.J. Lee, B.J. Lee, S. Lee, N.J. Kim, J.H. Kwak, Metall. Mater. Trans. A 43 (2012) 843–853.

    Article  Google Scholar 

  26. Z.Q. Wu, H. Ding, X.H. An, D. Han, X.Z. Liao, Mater. Sci. Eng. A 639 (2015) 187–191.

    Article  Google Scholar 

  27. C.L. Lin, C.G. Chao, J.Y. Juang, J.M. Yang, T.F. Liu, J. Alloy. Compd. 586 (2014) 616–620.

    Article  Google Scholar 

  28. J.W. Lee, J.G. Duh, S.Y. Tsai, Surf. Coat. Technol. 153 (2002) 59–66.

    Article  Google Scholar 

  29. M.S. Chen, H.C. Cheng, C.F. Huang, C.Y. Chao, K.L. Ou, C.H. Yu, Mater. Charact. 61 (2010) 206–211.

    Article  Google Scholar 

  30. C.S. Chen, C.T. Lin, P.W. Peng, M.S. Huang, K.L. Ou, L.H. Lin, C.H. Yu, J. Alloy. Compd. 493 (2010) 346–351.

    Article  Google Scholar 

  31. G. Tsay, C. Lin, C. Chao, T. Liu, Mater. Trans. 51 (2010) 2318–2321.

    Article  Google Scholar 

  32. J. Moon, S.J. Park, JWJ 33 (2015) 31–34.

    Google Scholar 

  33. J. Moon, S.J. Park, J.H. Jang, T.H. Lee, C.H. Lee, H.U. Hong, D.W. Suh, S.H. Kim, H.N. Han, B.H. Lee, Scripta Mater. 127 (2017) 97–101.

    Article  Google Scholar 

  34. S.C. Chang, Y.H. Hsiau, M.T. Jahn, J. Mater. Sci. 24 (1989) 1117–1120.

    Article  Google Scholar 

  35. N.J. Ho, S.C. Tjong, Mater. Sci. Eng. 94 (1987) 195–202.

    Article  Google Scholar 

  36. N.J. Ho, L.T. Wu, S.C. Tjong, Mater. Sci. Eng. A 102 (1988) 49–55.

    Article  Google Scholar 

  37. P.H. Ma, L.H. Qian, J.Y. Meng, S. Liu, F.C. Zhang, Mater. Sci. Eng. A 645 (2015) 136–141.

    Article  Google Scholar 

  38. S.P. Chen, R. Rana, A. Haldar, R.K. Ray, Prog. Mater. Sci. 89 (2017) 345–391.

    Article  Google Scholar 

  39. S.C. Tjong, Mater. Charact. 24 (1990) 275–292.

    Article  Google Scholar 

  40. K. Sato, K. Tagawa, Y. Inoue, Scripta Mater. 22 (1988) 899–902.

    Article  Google Scholar 

  41. Y.X. Wu, D. Tang, H.T. Jiang, Z.L. Mi, Y. Xue, H.P. Wu, J. Iron Steel Res. Int. 21 (2014) No. 3, 352–358.

    Article  Google Scholar 

  42. M.D. Chapetti, T. Tagawa, T. Miyata, Mater. Sci. Eng. A 356 (2003) 236–244.

    Article  Google Scholar 

  43. P.H. Ma, L.H. Qian, J.Y. Meng, S. Liu, F.C. Zhang, Mater. Sci. Eng. A 605 (2014) 160–166.

    Article  Google Scholar 

  44. X.W. Li, Z.G. Wang, S.X. Li, Phil. Mag. Lett. 79 (2010) 869–875.

    Article  Google Scholar 

  45. P. Li, S.X. Li, Z.G. Wang, Z.F. Zhang, Prog. Mater. Sci. 56 (2011) 328–377.

    Article  Google Scholar 

  46. Q.Y. Guo, Y.S. Chun, J.H. Lee, Y.U. Heo, C.S. Lee, Meter. Mater. Int. 20 (2014) 1043–1051.

    Article  Google Scholar 

  47. M.S. Pham, S.R. Holdsworth, K.G.F. Janssens, E. Mazza, Int. J. Plast. 47 (2013) 143–164.

    Article  Google Scholar 

  48. B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdorf, Acta Metall. Mater. 40 (1992) 205–219.

    Article  Google Scholar 

  49. V. Gerold, H.P. Karnthaler, Acta Mater. 37 (1989) 2177–2183.

    Article  Google Scholar 

  50. C.W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, Z.F. Zhang, Acta Mater. 103 (2016) 781–795.

    Article  Google Scholar 

  51. P.C. Guo, L.H. Qian, J.Y. Meng, F.C. Zhang, L.F. Li, Mater. Sci. Eng. A 584 (2013) 133–142.

    Article  Google Scholar 

  52. C.W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, Q.Q. Duan, Z.F. Zhang, Acta Mater. 118 (2016) 196–212.

    Article  Google Scholar 

  53. C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, J.C. Pang, Z.F. Zhang, Acta Mater. 134 (2017) 128–142.

    Article  Google Scholar 

Download references

Acknowledgements

The material was supplied by Baosteel Group, Shanghai. This research was financially supported by the National Key Research and Development Program of China (2016YFC0801905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-ping Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhao, Jp., Wang, Zy. et al. Effect of heat treatment on cyclic deformation properties of Fe–26Mn–10Al–C steel. J. Iron Steel Res. Int. 26, 200–210 (2019). https://doi.org/10.1007/s42243-019-00239-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00239-5

Keywords

Navigation