Skip to main content

Advertisement

Log in

Reduction of chromium ore by recycled silicon cutting sludge waste with carbon addition

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A basic study on the feasibility of producing ferrochrome (silicon) alloys using Si sludge waste collected from the silicon ingot cutting process was carried out, and the effects of the addition of carbon components, reaction time, and reaction temperature on the silicothermic reduction of chromium ore by Si sludge were studied. The cordierite (Mg2Al4Si5O18) phase was generated in the slag, and the Fe–Cr(–Si)–C alloy was formed by the silicothermic reduction. Moreover, the addition of carbon powder lowered the reduction initiating temperature, and the reduction ratio based on the oxygen content was evaluated at around 68–88% at 1573 K, which increased with an increase in carbon. However, it was difficult to find a significant difference in the reduction behavior in response to increasing the holding time. The reduced ferrochrome (Fe–Cr) metal alloy droplets coalesced more intensively with an increase in reduction temperature, and for manufacturing the Fe–Cr alloy, it is estimated that a temperature of 1773 K or higher is required for good separation of the slag and the metal. Furthermore, the metallization ratio was defined, and higher values are evaluated for Fe than for Cr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K.Y. Park, H.K. Park, B.W. Ko, T.W. Kang, H.D. Jang, Ind. Eng. Chem. Res. 52 (2013) 3943–3946.

    Article  Google Scholar 

  2. C.Y. Shih, S.H. Gau, C.C Kuo, C.Y. Huang, S.W. Kuo, J. Appl. Sci. Eng. 19 (2016) 75–82.

    Google Scholar 

  3. T.Y. Wang, Y.C. Lin, C.Y. Tai, C.C. Fei, M.Y. Tseng, C.W. Lan, Prog. Photovolt: Res. Appl. 17 (2009) 155–163.

    Article  Google Scholar 

  4. Y.C. Lin, T.Y. Wang, C.W. Lan, C.Y. Tai, Powder Technol. 200 (2010) 216–223.

    Article  Google Scholar 

  5. J.Y. Kim, U.S. Kim, K.T. Hwang, W.S. Cho, K.J. Kim, J. Korean Ceram. Soc. 48 (2011) 189–194.

    Article  Google Scholar 

  6. Y.C. Lin, C.Y. Tai, Sep. Purif. Technol. 74 (2010) 170–177.

    Article  Google Scholar 

  7. W.F. Smith, Structure and properties of engineering alloys, 2nd ed., B.H. Han Trans., Bando Publishing Inc., Seoul, Korea, 1994.

  8. M. Sumitomo, T. Okada, Tekko-to-Goukingenso (I), in: H. Sawamura (Eds.), The 19th Committee on Steelmaking, The Japan Society for the Promotion Science, Seibundoshinkousha, Tokyo, Japan, 1971, pp. 289–345.

    Google Scholar 

  9. S.A.C Hockaday, K. Bisaka, in: Proceedings of the Twelfth International Ferroalloys Congress Sustainable Future, Helsinki, Finland, 2010, pp. 367–376.

  10. S. Agarwal, J. Pal, D. Ghosh, Ironmak. Steelmak. 43 (2016) 97–111.

    Article  Google Scholar 

  11. B. Nandy, M.K. Chaudhury, J. Paul, D. Bhattacharjee, Metall. Mater. Trans. B 40 (2009) 662–675.

    Article  Google Scholar 

  12. C. Ugwuegbu, Innov. Syst. Des. Eng. 3 (2012) 48–54.

    Google Scholar 

  13. K.P.D. Perry, C.W.P. Finn, R.P. King, Metall. Trans. B 19 (1988) 677–684.

    Article  Google Scholar 

  14. M.H. Khedr, ISIJ Int. 40 (2000) 309–314.

    Article  Google Scholar 

  15. D. Chakraborty, S. Ranganathan, S.N. Sinha, Metall. Mater. Trans. B 36 (2005) 437–444.

    Article  Google Scholar 

  16. P. Weber, R.H. Eric, Miner. Eng. 19 (2006) 318–324.

    Article  Google Scholar 

  17. G. Kapure, V. Tathavadkar, C.B. Rao, S.M. Rao, K.S. Raju, in: Proceedings of The Twelfth International Ferroalloys Congress Sustainable Future, Helsinki, Finland, 2010, pp. 293–301

  18. G.U. Kapure, C.B. Rao, V.D. Tathavadkar, R. Sen, Ironmak. Steelmak. 38 (2011) 590–596.

    Article  Google Scholar 

  19. J.H. Kim, E.J. Jung, G.G. Lee, W.G. Jung, S.J. Yu, Y.C. Chang, Korean J. Mater. Res. 27 (2017) 263–269.

    Google Scholar 

  20. W.G. Jung, G.S. Back, F.T. Johra, J.H. Kim, Y.C. Chang, S.J. Yoo, J. Min. Metall. B 54 (2018) 29–37.

    Article  Google Scholar 

  21. Center for Research in Computational Thermochemistry, Montreal, Canada, FactSage 7.0, http://www.factsage.com (2016-10-01).

  22. P.W. Han, P.X. Chen, S.J. Chu, L.B. Liu, R. Chen, in: Proceeding of the Fourteenth International Ferroalloys Congress, Infacon XIV, Kiev, Ukraine, 2015, pp. 422–428.

    Google Scholar 

  23. JCPDS (International Centre of Diffraction Data) Card No. 22-1107 (1996)

  24. V.E. Roshchin, A.V. Roshchin, K.T. Akhmetov, Russian Metall. 2014 (2014) 173–178.

    Article  Google Scholar 

  25. J. Pan, C. Yang, D. Zhu, ISIJ Int. 55 (2015) 727–735.

    Article  Google Scholar 

  26. X. Hu, L.S. Ökvist, Q. Yang, B. Björkman, Ironmak. Steelmak. 42 (2015) 409–416.

    Article  Google Scholar 

  27. Y. Xiao, C. Schuffeneger, M. Reuter, L. Holappa, T. Seppälä, in: Proceeding of Tenth International Ferroalloys Congress, Infacon X, Cape Town, South Africa, 2004, pp. 26–35.

    Google Scholar 

  28. A. Atasoy, F.R. Sale, Solid State Phenom. 147-149 (2009) 752–757.

    Article  Google Scholar 

  29. JCPDS (International Centre of Diffraction Data) Card No. 89-1487 (1996)

  30. A.P. Zambrano, C. Takano, M.B. Mourao, Y.S. Tagusagawa, Y. Iguchi, ISIJ Int. 51 (2011) 1296–1300.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and funded by the Ministry of Trade, Industry, and Energy (No. 20165020301180) and by the Global Scholarship Program for Foreign Graduate Students at Kookmin University in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-gwang Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, Wg., Hossain, S.T., Johra, F.T. et al. Reduction of chromium ore by recycled silicon cutting sludge waste with carbon addition. J. Iron Steel Res. Int. 26, 806–817 (2019). https://doi.org/10.1007/s42243-018-0195-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0195-z

Keywords

Navigation