Skip to main content
Log in

Laser-induced jigsaw-like graphene structure inspired by Oxalis corniculata Linn. leaf

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

The laser scribing of polyimide (PI, Kapton) film is a new, simple and effective method for graphene preparation. Moreover, the superhydrophobic surface modification can undoubtedly widen the application fields of graphene. Herein, inspired by the hydrophobic and self-cleaning properties of natural Oxalis corniculata Linn. leaves, we propose a novel bionic manufacturing method for superhydrophobic laser-induced graphene (LIG). By tailoring the geometric parameters (size, roughness and height/area ratio) and chemical composition, the three-dimensional (3D) multistage LIG, i.e., with micro-jigsaw-like and porous structure, can deliver a static water contact angle (WCA) of 153.5° ± 0.6°, a water sliding angle (WSA) of 2.5° ± 0.5°, and great superhydrophobic stability lasting for 100 days (WCAs ≈ 150°). This outstanding water repellency is achieved by the secondary structure of jigsaw-like LIG, a porous morphology that traps air layers at the solid–liquid interface. The robust self-cleaning and anti-stick functions of 3D bionic and multistage LIG are demonstrated to confirm its great potential in wearable electronics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chyan Y, Ye R, Li Y et al (2018) Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12:2176–2183. https://doi.org/10.1021/acsnano.7b08539

    Article  Google Scholar 

  2. Ye R, James DK, Tour JM et al (2018) Laser-induced graphene. Acc Chem Res 51:1609–1620. https://doi.org/10.1021/acs.accounts.8b00084

    Article  Google Scholar 

  3. Le TSD, Park S, An J et al (2019) Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv Funct Mater 29:1902771. https://doi.org/10.1002/adfm.201902771

    Article  Google Scholar 

  4. Gao J, Shao C, Shao S et al (2019) Laser-assisted multiscale fabrication of configuration-editable supercapacitors with high energy density. ACS Nano 13:7463–7470. https://doi.org/10.1021/acsnano.9b02176

    Article  Google Scholar 

  5. Wang Y, Wang Y, Zhang P et al (2018) Laser-induced freestanding graphene papers: a new route of scalable fabrication with tunable morphologies and properties for multifunctional devices and structures. Small 14:1802350. https://doi.org/10.1002/smll.201802350

    Article  Google Scholar 

  6. Wang W, Lu L, Xie Y et al (2020) Tailoring the surface morphology and nanoparticle distribution of laser-induced graphene/Co3O4 for high-performance flexible microsupercapacitors. Appl Surf Sci 504:144487. https://doi.org/10.1016/j.apsusc.2019.144487

    Article  Google Scholar 

  7. Zhang C, Peng Z, Huang C et al (2021) High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems. Nano Energy 81:105609. https://doi.org/10.1016/j.nanoen.2020.105609

    Article  Google Scholar 

  8. Zang X, Jian C, Zhu T et al (2019) Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nat Commun 10:3112. https://doi.org/10.1038/s41467-019-10999-z

    Article  Google Scholar 

  9. Kulyk B, Silva BFR, Carvalho AF et al (2021) Laser-induced graphene from paper for mechanical sensing. ACS Appl Mater Interf 13:10210–10221. https://doi.org/10.1021/acsami.0c20270

    Article  Google Scholar 

  10. Carvalho AF, Fernandes AJS, Leitão C et al (2018) Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv Funct Mater 28:1805271. https://doi.org/10.1002/adfm.201805271

    Article  Google Scholar 

  11. Li Y, Luong DX, Zhang J et al (2017) Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv Mater 29:1700496. https://doi.org/10.1002/adma.201700496

    Article  Google Scholar 

  12. Wang WT, Lu LS, Xie YX et al (2020) A highly stretchable microsupercapacitor using laser-induced graphene/NiO/Co3O4 electrodes on a biodegradable waterborne polyurethane substrate. Adv Mater Technol 5:1900903. https://doi.org/10.1002/admt.201900903

    Article  Google Scholar 

  13. Ye R, James DK, Tour JM et al (2019) Laser-induced graphene: from discovery to translation. Adv Mater 31:1803621. https://doi.org/10.1002/adma.201803621

    Article  Google Scholar 

  14. Wang WT, Lu LS, Xie YX et al (2021) One-step laser induced conversion of a gelatin-coated polyimide film into graphene: tunable morphology, surface wettability and microsupercapacitor applications. Sci China Technol Sci 64:1030–1040. https://doi.org/10.1007/s11431-020-1609-4

    Article  Google Scholar 

  15. Li JT, Stanford MG, Chen W et al (2020) Laminated laser-induced graphene composites. ACS Nano 14:7911–7919. https://doi.org/10.1021/acsnano.0c02835

    Article  Google Scholar 

  16. Le Dinh TS, An J, Huang Y et al (2019) Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano 13:13293–13303. https://doi.org/10.1021/acsnano.9b06354

    Article  Google Scholar 

  17. Luong DX, Yang K, Yoon J et al (2019) Laser-induced graphene composites as multifunctional surfaces. ACS Nano 13:2579–2586. https://doi.org/10.1021/acsnano.8b09626

    Article  Google Scholar 

  18. Rafiee J, Rafiee MA, Yu ZZ et al (2010) Superhydrophobic to superhydrophilic wetting control in graphene films. Adv Mater 22:2151–2154. https://doi.org/10.1002/adma.200903696

    Article  Google Scholar 

  19. Parmeggiani M, Zaccagnini P, Stassi S et al (2019) PDMS/Polyimide composite as an elastomeric substrate for multifunctional laser-induced graphene electrodes. ACS Appl Mater Interf 11:33221–33230. https://doi.org/10.1021/acsami.9b10408

    Article  Google Scholar 

  20. Du Q, Liu J, Guo L et al (2016) Tailoring the surface wettability of polyimide by UV laser direct texturing in different gas atmospheres. Mater Des 104:134–140. https://doi.org/10.1016/j.matdes.2016.05.008

    Article  Google Scholar 

  21. Wang Y, Wang G, He M et al (2021) Multifunctional laser-induced graphene papers with combined defocusing and grafting processes for patternable and continuously tunable wettability from superlyophilicity to superlyophobicity. Small 17:2103322. https://doi.org/10.1002/smll.202103322

    Article  Google Scholar 

  22. Nasser J, Lin J, Zhang L et al (2020) Laser induced graphene printing of spatially controlled super-hydrophobic/hydrophilic surfaces. Carbon 162:570–578. https://doi.org/10.1016/j.carbon.2020.03.002

    Article  Google Scholar 

  23. Jeong SY, Ma YW, Lee JU et al (2019) Flexible and highly sensitive strain sensor based on laser-induced graphene pattern fabricated by 355 nm pulsed laser. Sensors 19:4867. https://doi.org/10.3390/s19224867

    Article  Google Scholar 

  24. Wang WT, Lu LS, Xie YX et al (2020) Controlling the laser induction and cutting process on polyimide films for kirigami-inspired supercapacitor applications. Sci China Technol Sci 64:651–661. https://doi.org/10.1007/s11431-019-1543-y

    Article  Google Scholar 

  25. Xie H, Huang HX, Peng YJ et al (2017) Rapid fabrication of bio-inspired nanostructure with hydrophobicity and antireflectivity on polystyrene surface replicating from cicada wings. Nanoscale 9:11951–11958. https://doi.org/10.1039/c7nr04176d

    Article  Google Scholar 

  26. Wang JN, Liu YQ, Zhang YL et al (2018) Wearable superhydrophobic elastomer skin with switchable wettability. Adv Funct Mater 28:1800625. https://doi.org/10.1002/adfm.201800625

    Article  Google Scholar 

  27. Lou Z, Chen S, Wang L et al (2017) Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy 38:28–35. https://doi.org/10.1016/j.nanoen.2017.05.024

    Article  Google Scholar 

  28. Jung YH, Park B, Kim JU et al (2019) Bioinspired electronics for artificial sensory systems. Adv Mater 31:1803637. https://doi.org/10.1002/adma.201803637

    Article  Google Scholar 

  29. Wong TS, Kang SH, Tang SKY et al (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447. https://doi.org/10.1038/nature10447

    Article  Google Scholar 

  30. Barthlott W, Mail M, Bhushan B et al (2017) Plant surfaces: structures and functions for biomimetic innovations. Nano-Micro Lett 9:23. https://doi.org/10.1007/s40820-016-0125-1

    Article  Google Scholar 

  31. Nine MJ, Tung TT, Alotaibi F et al (2017) Facile adhesion-tuning of superhydrophobic surfaces between “lotus” and “petal” effect and their influence on icing and deicing properties. ACS Appl Mater Interf 9:8393–8402. https://doi.org/10.1021/acsami.6b16444

    Article  Google Scholar 

  32. Zheng Y, Zhang C, Wang J et al (2020) Nonwet kingfisher flying in the rain: the tumble of droplets on moving oriented anisotropic superhydrophobic substrates. ACS Appl Mater Interf 12:35707–35715. https://doi.org/10.1021/acsami.0c08889

    Article  Google Scholar 

  33. Liu L, Jiao Z, Zhang J et al (2021) Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications. ACS Appl Mater Interf 13:1967–1978. https://doi.org/10.1021/acsami.0c18818

    Article  Google Scholar 

  34. Park JK, Yang Z, Kim S et al (2017) Black silicon/elastomer composite surface with switchable wettability and adhesion between lotus and rose petal effects by mechanical strain. ACS Appl Mater Interf 9:33333–33340. https://doi.org/10.1021/acsami.7b11143

    Article  Google Scholar 

  35. Xu R, Zverev A, Hung A et al (2018) Kirigami-inspired, highly stretchable micro-supercapacitor patches fabricated by laser conversion and cutting. Microsyst Nanoeng 4:36. https://doi.org/10.1038/s41378-018-0036-z

    Article  Google Scholar 

  36. Tiliakos A, Ceaus C, Iordache SM et al (2016) Morphic transitions of nanocarbons via laser pyrolysis of polyimide films. J Anal Appl Pyrolysis 121:275–286. https://doi.org/10.1016/j.jaap.2016.08.007

    Article  Google Scholar 

  37. Kim Y, Noh Y, Park S et al (2020) Ablation of polyimide thin-film on carrier glass using 355 nm and 37 ns laser pulses. Int J Heat Mass Transf 147:118896. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118896

    Article  Google Scholar 

  38. Lee JU, Ma YW, Jeong SY et al (2020) Direct fabrication of ultra-sensitive humidity sensor based on hair-like laser-induced graphene patterns. Micromachines 11:476. https://doi.org/10.3390/MI11050476

    Article  Google Scholar 

  39. Hu S, Shi Z, Zheng R et al (2020) Superhydrophobic liquid-solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. ACS Appl Mater Interf 12:40021–40030. https://doi.org/10.1021/acsami.0c10097

    Article  Google Scholar 

  40. Han Z, Wang Z, Li B et al (2019) Flexible self-cleaning broadband antireflective film inspired by the transparent cicada wings. ACS Appl Mater Interf 11:17019–17027. https://doi.org/10.1021/acsami.9b01948

    Article  Google Scholar 

  41. Choong CL, Shim MB, Lee BS et al (2014) Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26:3451–3458. https://doi.org/10.1002/adma.201305182

    Article  Google Scholar 

  42. Lee JU, Ma YW, Jeong SY et al (2020) Fabrication of UV laser-induced porous graphene patterns with nanospheres and their optical and electrical characteristics. Materials 13:3930. https://doi.org/10.3390/MA13183930

    Article  Google Scholar 

  43. Lin N, Chen H, Wang W et al (2021) Laser-induced graphene/MoO2 core-shell electrodes on carbon cloth for integrated, high-voltage, and in-planar microsupercapacitors. Adv Mater Technol 6:2000991. https://doi.org/10.1002/admt.202000991

    Article  Google Scholar 

  44. Wang G, Wang Y, Luo Y et al (2020) A self-converted strategy toward multifunctional composites with laser-induced graphitic structures. Compos Sci Technol 199:108334. https://doi.org/10.1016/j.compscitech.2020.108334

    Article  Google Scholar 

  45. Wang F, Wang K, Dong X et al (2017) Formation of hierarchical porous graphene films with defects using a nanosecond laser on polyimide sheet. Appl Surf Sci 419:893–900. https://doi.org/10.1016/j.apsusc.2017.05.084

    Article  Google Scholar 

  46. Trusovas R, Ratautas K, Račiukaitis G et al (2019) Graphene layer formation in pinewood by nanosecond and picosecond laser irradiation. Appl Surf Sci 471:154–161. https://doi.org/10.1016/j.apsusc.2018.12.005

    Article  Google Scholar 

  47. Go D, Lott P, Stollenwerk J et al (2016) Laser carbonization of PAN-nanofiber mats with enhanced surface area and porosity. ACS Appl Mater Interf 8:28412–28417. https://doi.org/10.1021/acsami.6b09358

    Article  Google Scholar 

  48. Ruan X, Wang R, Luo J et al (2018) Experimental and modeling study of CO2 laser writing induced polyimide carbonization process. Mater Des 160:1168–1177. https://doi.org/10.1016/j.matdes.2018.10.050

    Article  Google Scholar 

  49. Wang R, Duan X, Yao J et al (2020) Processing–structure–property relationship in direct laser writing carbonization of polyimide. J Appl Polym Sci 137:e48978. https://doi.org/10.1002/app.48978

    Article  Google Scholar 

  50. Zang X, Jian C, Ingersoll S et al (2020) Laser-engineered heavy hydrocarbons: old materials with new opportunities. Sci Adv 6: eaaz5231. https://doi.org/10.1126/sciadv.aaz5231

Download references

Acknowledgements

The current study was supported by the Natural Science Foundation of Guangdong Province, China (No. 2021B1515020087) and the National Natural Science Foundation of China (No. 51905178).

Author information

Authors and Affiliations

Authors

Contributions

WTW: writing-original draft preparation. LSL: conceptualization, data curation. XYL: methodology. ZBL: investigation. BT: software. YXX: writing-reviewing and editing.

Corresponding author

Correspondence to Yingxi Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (PDF 739 KB)

Supplementary file3 (AVI 1167 KB)

Supplementary file4 (AVI 1735 KB)

Supplementary file5 (AVI 2596 KB)

Supplementary file6 (AVI 6995 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Lu, L., Lu, X. et al. Laser-induced jigsaw-like graphene structure inspired by Oxalis corniculata Linn. leaf. Bio-des. Manuf. 5, 700–713 (2022). https://doi.org/10.1007/s42242-022-00197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-022-00197-0

Keywords

Navigation