Skip to main content
Log in

Research progress of slippage characteristic and gas film stability enhancement methods on biomimetic hydrophobic surfaces

  • Special Column on the 34th NCHD (Guest Editor Zheng Ma)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The biomimetic hydrophobic surface is a potentially efficient underwater drag reduction method and the drag reduction mechanism of this kind of surface comes from the interfacial slippage. For now, it is a hotspot to grasp the slippage characteristic and explore slippage enhancement strategies. This paper not only summarizes our numerical simulation and experimental results of slippage characteristic at the solid-liquid interface (SLI) of hydrophobic surfaces (HS) and the gas-liquid interface (GLI) of superhydrophobic surfaces (SHS) in recent years, but also introduces some innovative methods that can effectively improve the gas film stability and drag reduction effect of SHS. First, we used the molecular dynamics (MD) simulation method to figure out the effect of the solid-liquid interaction strength, the system temperature and the shear rate on the slippage of SLI, and expound their action mechanism from molecular scale. Then, by MD and multibody dissipative particle dynamics (MDPD) method, the slippage behavior at the GLI was studied under the influence of the microstructure size and the flow driving velocity. We proposed a new kind of hybrid slip boundary condition model to describe the slippage characteristic on GLI. In addition, we found through experiment that a three-dimensional backflow will appear on the GLI under the interfacial adsorption of surfactants, and the backflow direction will reverse with the change of GLI morphology. Finally, we put forward the wettability step structure and gas injection method to enhance the stability and drag reduction effect of the gas film on SHS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mäkiharju S. A., Perlin M., Ceccio S L. On the energy economics of air lubrication drag reduction [J]. International Journal of Naval Architecture and Ocean Engineering, 2012, 4(4): 412–422.

    Article  Google Scholar 

  2. Neinhuis W. B. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta, 1997, 202(1): 1–8.

    Article  Google Scholar 

  3. Zuo Y., Zheng L., Zhao C. et al. Micro-/nanostructured interface for liquid manipulation and its applications [J]. Small, 2020, 16(9): 1903849.

    Article  Google Scholar 

  4. Samaha M. A., Gad-El-Hak M. Slippery surfaces: A decade of progress [J]. Physics of Fluids, 2021, 33(7): 071301.

    Article  Google Scholar 

  5. Tian G., Zhang Y., Feng X. et al. Focus on bioinspired textured surfaces toward fluid drag reduction: Recent progresses and challenges [J]. Advanced Engineering Materials, 2022, 24(1): 2100696.

    Article  Google Scholar 

  6. Rothstein J. P. Slip on superhydrophobic surfaces [J]. Annual Review of Fluid Mechanics, 2009, 42(1): 89–109.

    Article  Google Scholar 

  7. Lee C., Choi C. H., Kim C. J. Superhydrophobic drag reduction in laminar flows: A critical review [J]. Experiments in Fluids, 2016, 57(12): 176.

    Article  Google Scholar 

  8. Park H., Choi C. H., Kim C. J. Superhydrophobic drag reduction in turbulent flows: A critical review [J]. Experiments in Fluids, 2021, 62(11): 229.

    Article  Google Scholar 

  9. Voronov R. S., Papavassiliou D. V., Lee L. L. Slip length and contact angle over hydrophobic surfaces [J]. Chemical Physics Letters, 2007, 441(4–6): 273–276.

    Article  Google Scholar 

  10. Priezjev N. V. Rate-dependent slip boundary conditions for simple fluids [J]. Physical Review E, 2007, 75(5): 051605.

    Article  Google Scholar 

  11. Xie J. F., Cao B. Y. Influence of travelling surface waves on nanofluidic viscosity [J]. Computers and Fluids, 2018, 160: 42–50.

    Article  MathSciNet  Google Scholar 

  12. Liu C., Li Z. Flow regimes and parameter dependence in nanochannel flows [J]. Physical Review E, 2009, 80(3): 036302.

    Article  Google Scholar 

  13. Liu C., Li Z. Surface effects on nanoscale Poiseuille flows under large driving force [J]. Journal of Chemical Physics, 2010, 132(2): 024507.

    Article  Google Scholar 

  14. Teisala H., Butt H. J. Hierarchical structures for superhydrophobic and superoleophobic surfaces [J]. Langmuir, 2019, 35(33): 10689–10703.

    Article  Google Scholar 

  15. Wen J., Hu H. B., Luo Z. Z. et al. Experimental investigation of flow past a circular cylinder with hydrophobic coating [J]. Journal of Hydrodynamics, 2018, 30(6): 992–1000.

    Article  Google Scholar 

  16. Ou J., Rothstein J. P. Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces [J]. Physics of Fluids, 2005, 17(10): 103606.

    Article  Google Scholar 

  17. Ybert C., Barentin C., Cottin-Bizonne C. et al. Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries [J]. Physics of Fluids, 2007, 19(12): 123601.

    Article  Google Scholar 

  18. Schmieschek S., Belyaev A. V., Harting J. et al. Tensorial slip of superhydrophobic channels [J]. Physical Review E, 2012, 85(1): 016324.

    Article  Google Scholar 

  19. Schönecker C., Baier T., Hardt S. Influence of the enclosed fluid on the flow over a microstructured surface in the Cassie state [J]. Journal of Fluid Mechanics, 2014, 740: 168–195.

    Article  MathSciNet  Google Scholar 

  20. Schäffel D., Koynov K., Vollmer D. et al. Local flow field and slip length of superhydrophobic surfaces [J]. Physical Review Letters, 2016, 116(13): 134501.

    Article  Google Scholar 

  21. Huang S., Lv P., Duan H. Morphology evolution of liquid–gas interface on submerged solid structured surfaces [J]. Extreme Mechanics Letters, 2019, 27: 34–51.

    Article  Google Scholar 

  22. Mehanna Y. A., Sadler E., Upton R. L. et al. The challenges, achievements and applications of submersible superhydrophobic materials [J]. Chemical Society Reviews, 2021, 50(11): 6569–6612.

    Article  Google Scholar 

  23. Gaard E., Andersen N. K., Smistrup K. et al. Study of transitions between wetting states on microcavity arrays by optical transmission microscopy [J]. Langmuir, 2014, 30(43): 12960.

    Article  Google Scholar 

  24. Seo J., García-Mayoral R., Mani A. Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces [J]. Journal of Fluid Mechanics, 2015, 783: 448–473.

    Article  MathSciNet  Google Scholar 

  25. Hemeda A. A., H Vahedi T. General formulations for predicting longevity of submerged superhydrophobic surfaces composed of pores or posts [J]. Langmuir, 2014, 30(34): 10317–10327.

    Article  Google Scholar 

  26. Choi W., Byeon H., Park J. Y. et al. Effects of pressure gradient on stability and drag reduction of superhydrophobic surfaces [J]. Applied Physics Letters, 2019, 114(10): 101603.

    Article  Google Scholar 

  27. Lv P., Xiang Y., Xue Y. et al. Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures [J]. Physics of Fluids, 2017, 29(3): 032001.

    Article  Google Scholar 

  28. Xiang Y., Huang S., Lv P. et al. Ultimate stable underwater superhydrophobic state [J]. Physical Review Letters, 2017, 119(13): 134501.

    Article  Google Scholar 

  29. Ling H., Katz J., Fu M. et al. Effect of Reynolds number and saturation level on gas diffusion in and out of a superhydrophobic surface [J]. Physical Review Fluids, 2017, 2(12): 124005.

    Article  Google Scholar 

  30. Xiang Y., Xue Y., Lv P. et al. Influence of fluid flow on the stability and wetting transition of submerged superhydrophobic surfaces [J]. Soft Matter, 2016, 12(18): 4241–4246.

    Article  Google Scholar 

  31. Bao L., Priezjev N. V., Hu H. et al. Effects of viscous heating and wall-fluid interaction energy on rate-dependent slip behavior of simple fluids [J]. Physical Review E, 2017, 96(3): 033110.

    Article  Google Scholar 

  32. Hu H., Bao L., Priezjev N. V. et al. Identifying two regimes of slip of simple fluids over smooth surfaces with weak and strong wall-fluid interaction energies [J]. Journal of Chemical Physics, 2017, 146(3): 034701.

    Article  Google Scholar 

  33. Wang F. C., Zhao Y. P. Slip boundary conditions based on molecular kinetic theory: The critical shear stress and the energy dissipation at the liquid-solid interface [J]. Soft Matter, 2011, 7(18): 8628–8634.

    Article  Google Scholar 

  34. Lichter S., Martini A., Snurr R. Q. et al. Liquid slip in nanoscale channels as a rate process [J]. Physical Review Letters, 2007, 98(22): 226001.

    Article  Google Scholar 

  35. Bao L., Hu H., Wen J. et al. Three-dimensional structure of a simple liquid at a face-centered-cubic (001) solid surface interface [J]. Scientific Reports, 2016, 6(1): 29786.

    Article  Google Scholar 

  36. Thompson P. A., Robbins M. O. Shear-flow near solids-epitaxial order and flow boundary-conditions [J]. Physical Review A, 1990, 41(12): 6830–6837.

    Article  Google Scholar 

  37. Ou J., Perot B., Rothstein J. P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces [J]. Physics of Fluids, 2004, 16(12): 4635–4643.

    Article  Google Scholar 

  38. Bao L., Priezjev N. V., Hu H. The local slip length and flow fields over nanostructured superhydrophobic surfaces [J]. International Journal of Multiphase Flow, 2020, 126: 103258.

    Article  MathSciNet  Google Scholar 

  39. Song D., Daniello R. J., Rothstein J. P. Drag reduction using superhydrophobic sanded Teflon surfaces [J]. Experiments in Fluids, 2014, 55(8): 1783.

    Article  Google Scholar 

  40. Ren L., Hu H., Bao L. et al. Many-body dissipative particle dynamics study of the local slippage over superhydrophobic surfaces [J]. Physics of Fluids, 2021, 33(7): 072001.

    Article  Google Scholar 

  41. Gao P., Feng J. J. Enhanced slip on a patterned substrate due to depinning of contact line [J]. Physics of Fluids, 2009, 21(10): 102102.

    Article  Google Scholar 

  42. Aljallis E., Sarshar M. A., Datla R. et al. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow [J]. Physics of Fluids, 2013, 25(2): 025103.

    Article  Google Scholar 

  43. Xu M., Yu N., Kim J. et al. Superhydrophobic drag reduction in high-speed towing tank [J]. Journal of Fluid Mechanics, 2020, 908: A6.

    Article  MathSciNet  Google Scholar 

  44. Hu H., Wang D., Ren F. et al. A comparative analysis of the effective and local slip lengths for liquid flows over a trapped nanobubble [J]. International Journal of Multiphase Flow, 2018, 104: 166–173.

    Article  MathSciNet  Google Scholar 

  45. Peaudecerf F. J., Landel J. R., Goldstein R. E. et al. Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces [J]. Proceedings of the National Academy of Sciences, 2017, 114(28): 7254.

    Article  Google Scholar 

  46. Landel J. R., Peaudecerf F. J., Temprano-Coleto F. et al. A theory for the slip and drag of superhydrophobic surfaces with surfactant [J]. Journal of Fluid Mechanics, 2020, 883: A18.

    Article  MathSciNet  Google Scholar 

  47. Li H., Li Z., Tan X. et al. Three-dimensional backflow at liquid-gas interface induced by surfactant [J]. Journal of Fluid Mechanics, 2020, 899: A8.

    Article  MathSciNet  Google Scholar 

  48. Baier T., Hardt S. Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers [J]. Journal of Fluid Mechanics, 2021, 907: A3.

    Article  Google Scholar 

  49. Tomlinson S. D., Gibou F., Luzzatto-Fegiz P. et al. Laminar drag reduction in surfactant-contaminated superhydrophobic channels [J]. Journal of Fluid Mechanics, 2023, 963: A10.

    Article  MathSciNet  Google Scholar 

  50. Song D., Song B., Hu H. et al. Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface [J]. Physical Review Fluids, 2018, 3(3): 033303.

    Article  Google Scholar 

  51. Hu H., Wen J., Bao L. et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips [J]. Science Advances, 2017, 3(9): e1603288.

    Article  Google Scholar 

  52. Zhang M., Hu H., Wen J. et al. Controlling the morphology and slippage of the air-water interface on superhydrophobic surfaces [J]. Experiments in Fluids, 2023, 64(6): 121.

    Article  Google Scholar 

  53. Du P., Wen J., Zhang Z. et al. Maintenance of air layer and drag reduction on superhydrophobic surface [J]. Ocean Engineering, 2017, 130: 328–335.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shenzhen Science and Technology Program (Grant No. JCYJ20210324122201004), the Qinchuangyuan high-level innovative and entrepreneurial talents introduction plan (Grant No. QCYRCXM-2022-125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wen.

Ethics declarations

Conflict of interest: The authors declare that they have no conflict of interest. Hai-bao Hu, Jun Wen and Luo Xie are editorial board members for the Journal of Hydrodynamics and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no other competing interests.

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent: Not applicable.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 52071272, 52201382 and 12102358).

Biography: Meng-zhuo Zhang (1996-), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Mz., Hu, Hb., Ren, Lz. et al. Research progress of slippage characteristic and gas film stability enhancement methods on biomimetic hydrophobic surfaces. J Hydrodyn 36, 87–101 (2024). https://doi.org/10.1007/s42241-024-0004-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-024-0004-z

Key words

Navigation