Skip to main content
Log in

Suppression of self-sustained oscillations of incompressible flow over aperture-cavities and its mechanisms

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Experiments and large-eddy simulations (LESs) are conducted to study the effectiveness and the underlying physical mechanisms of a passive control technique for suppressing the self-sustained oscillations of incompressible flow over aperture-cavities. The control technique is implemented by installing a wedge block above the chamfered leading-edge. The experiments are carried out in a low-speed water tunnel with the freestream velocity ranging from 0.4 m/s to 4.4 m/s, while the large-eddy simulations are carried out corresponding to the experiment at a velocity of 4.0 m/s. The wall pressure fluctuations measured along the cavity floor show that a significant suppression of the self-sustained oscillations of the shear layers can be achieved by the control device. Furthermore, the suppression performance is improved as the freestream velocity increases, not limited to the design point of the control device. The analysis of numerical simulation results focuses on three aspects, the vorticity fields, the velocity fields and the pressure fields, and the physical effects of the control device on the incompressible aperture-cavity flow are visualized. Three mechanisms of suppressing the cavity oscillations are identified from the numerical results, which are the destruction of the large vortex structures by the high frequency vortical excitations, the inhabitation of the intracavity recirculation feedback by introducing the lower shunt flow, and the attenuation of the trailing-edge impingement by thickening the shear layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rossiter J. E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds [R]. Aeronautical Research Council, Technical Report No. R&M 3438, 1964.

  2. Lusseyran F., Pastur L. R., Letellier C. Dynamical analysis of an intermittency in an open cavity flow [J]. Physics of Fluids, 2008, 20(11): 114101.

    Article  MATH  Google Scholar 

  3. Basley J., Pastur L. R., Lusseyran F. et al. Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV [J]. Experiments in Fluids, 2011, 50(4): 905–918.

    Article  Google Scholar 

  4. Yamouni S., Sipp D., Jacquin L. Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: A global stability analysis [J]. Journal of Fluid Mechanics, 2013, 717: 134–165.

    Article  MathSciNet  MATH  Google Scholar 

  5. Tuerke F., Sciamarella D., Pastur L. R. et al. Frequency-selection mechanism in incompressible open-cavity flows via reflected instability waves [J]. Physical Review E, 2015, 91: 013005.

    Article  Google Scholar 

  6. Basley J., Pastur L. R., Delprat N. et al. Space-time aspects of a three-dimensional multi-modulated open cavity flow [J]. Physics of Fluids, 2013, 25(6): 064105.

    Article  Google Scholar 

  7. Tuerke F., Pastur L., Fraigneau Y. et al. Nonlinear dynamics and hydrodynamic feedback in two-dimensional double cavity flow [J]. Journal of Fluid Mechanics, 2017, 813: 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  8. Tuerke F., Lusseyran F., Sciamarella D. et al. Nonlinear delayed feedback model for incompressible open cavity flow [J]. Physical Review E, 2020, 5(2): 24401.

    Google Scholar 

  9. Ma R., Slaboch P. E., Morris S. C. Fluid mechanics of the flow-excited Helmholtz resonator [J]. Journal of Fluid Mechanics, 2009, 623: 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  10. Dai X., Jing X., Sun X. Discrete vortex model of a Helmholtz resonator subjected to high-intensity sound and grazing flow [J]. Journal of the Acoustical Society of America, 2012, 132(5): 2988–2996.

    Article  Google Scholar 

  11. Bennett G. J., Stephens D. B., Rodriguez V. F. Resonant mode characterisation of a cylindrical Helmholtz cavity excited by a shear layer [J]. Journal of the Acoustical Society of America, 2017, 141(1): 7–18.

    Article  Google Scholar 

  12. Tian J., Yuan G. Q., Hua H. X. Flow induced structural vibration and sound radiation of a hydrofoil with a cavity [J]. Journal of Hydrodynamics, 2018, 30(6): 1022–1037.

    Article  Google Scholar 

  13. Blake W. K. Shear layer instabilities, flow tones, and jet noise, in: Mechanics of flow induced sound and vibration [M]. London, UK: Academic Press, 1986, 130–218.

    Google Scholar 

  14. Cattafesta L. N., Song Q., Williams D. R. et al. Active control of flow-induced cavity oscillations [J]. Progress in Aerospace Sciences, 2008, 44(7–8): 479–502.

    Article  Google Scholar 

  15. Zhang Y., Sun Y., Arora N. et al. Suppression of cavity flow oscillations via three-dimensional steady blowing [J]. AIAA Journal, 2019, 57(1): 90–105.

    Article  Google Scholar 

  16. Wang X., Yang D., Liu J. et al. Control of pressure oscillations induced by supersonic cavity flow [J]. AIAA Journal, 2020, 58(5): 2070–2077.

    Article  Google Scholar 

  17. Shaaban M., Mohany A. Passive control of flow-excited acoustic resonance in rectangular cavities using upstream mounted blocks [J]. Experiments in Fluids, 2015, 56(4): 1–12.

    Article  Google Scholar 

  18. Wang Y., Li S., Yang X. Numerical investigation of the passive control of cavity flow oscillations by a dimpled non-smooth surface [J]. Applied Acoustics, 2016, 111: 16–24.

    Article  Google Scholar 

  19. Luo K., Zhu W., Xiao Z. et al. Investigation of spectral characteristics by passive control methods past a supersonic cavity [J]. AIAA Journal, 2018, 56(7): 2669–2686.

    Article  Google Scholar 

  20. Sarpotdar S., Panickar P., Raman G. Stability of a hybrid mean velocity profile and its relevance to cavity resonance suppression [J]. Physics of Fluids, 2010, 22(7): 076101.

    Article  Google Scholar 

  21. Martinez M. A., Di Cicca G. M., Iovieno M. et al. Control of cavity flow oscillations by high frequency forcing [J]. Journal of Fluids Engineering, 2012, 134(5): 1–11.

    Article  Google Scholar 

  22. Zhang W., Xu R. Numerical investigation on the influence of leading-edge spoilers on underwater flow-induced cavity oscillations [J]. Journal of Vibration and Shock, 2021, 40(24): 12–21(in Chinese).

    Google Scholar 

  23. Kim S. J., Huang W., Sung H. J. The reduction of noise induced by flow over an open cavity [J]. International Journal of Heat Fluid Flow, 2020, 82: 108560.

    Article  Google Scholar 

  24. Nicoud F., Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor [J]. Flow, Turbulence and Combustion, 1999, 62(3): 183–200.

    Article  MATH  Google Scholar 

  25. Ukeiley L., Ponton M. K., Seiner J. M. et al. Suppression of pressure loads in cavity flows [J]. AIAA Journal, 2004, 42(1): 70–79.

    Article  Google Scholar 

  26. Panigrahi C., Vaidyanathan A., Nair M. T. Effects of subcavity in supersonic cavity flow [J]. Physics of Fluids, 2019, 31(3): 036101.

    Article  Google Scholar 

  27. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Article  Google Scholar 

  28. Hunt J., Wray A., Moin P. Eddies, streams, and convergence zones in turbulent flows [R]. Proceedings of the Summer Program. Center for Turbulence Research, 1988, 193–208.

  29. Zhang Y. H., Hu X. J., Lan W. et al. Application of Omega vortex identification method in cavity buffeting noise [J]. Journal of Hydrodynamics, 2021, 33(2): 259–270.

    Article  Google Scholar 

  30. Bengana Y., Loiseau J. C., Robinet J. C. et al. Bifurcation analysis and frequency prediction in shear-driven cavity flow [J]. Journal of Fluid Mechanics, 2019, 875: 725–757.

    Article  MathSciNet  MATH  Google Scholar 

  31. Larcheveque L., Sagaut P., Le T. H. et al. Large-eddy simulation of a compressible flow in three-dimensional open cavity at high Reynolds number [J]. Journal of Fluid Mechanics, 2004, 516: 265–301.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-wu Xu.

Additional information

Biography: Wen-wen Zhang (1995–), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Ww., Xu, Rw., He, L. et al. Suppression of self-sustained oscillations of incompressible flow over aperture-cavities and its mechanisms. J Hydrodyn 34, 876–892 (2022). https://doi.org/10.1007/s42241-022-0070-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0070-z

Key words

Navigation