Skip to main content
Log in

Studying turbulence structure near the wall in hydrodynamic flows: An approach based on the Schur decomposition of the velocity gradient tensor

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The Schur decomposition of the velocity gradient tensor (VGT) is an alternative to the classical Cauchy-Stokes decomposition into rotation rate and strain rate components. Recently, there have been several strands of work that have employed this decomposition to examine the physics of turbulence dynamics, including approaches that combine the Schur and Cauchy-Stokes formalisms. These are briefly reviewed before the latter approach is set out. This partitions the rotation rate and strain rate tensors into normal/local and non-normal/non-local contributions. We then study the relation between the VGT dynamics and ejection-sweep events in a channel flow boundary-layer. We show that the sweeps in particular exhibit novel behaviour compared with either the other quadrants, or the flow in general, with a much-reduced contribution to the dynamics from the non-normal terms above the viscous sub-layer. In particular, the reduction in the production term that is the interaction between the non-normality and the normal straining reduces in the log-layer as a consequence of an absence of alignment between the non-normal vorticity and the strain rate eigenvectors. There have been early forays into using the Schur transform approach for subgrid-scale modelling in large-eddy simulation (LES) and this would appear to be an exciting way forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Escauriaza C., Paola C., Voller V. R. Computational models of flow, sediment transport and morphodynamics in rivers (Gravel-bed rivers: Process and disasters) [M]. New York, USA: John Wiley and Sons, 2017, 1–31.

    Google Scholar 

  2. Keylock C. J., Hardy R. J., Parsons D. R. et al. The theoretical foundations and potential for large-eddy simulation (LES) in fluvial geomorphic and sedimentological research [J]. Earth-Science Reviews, 2005, 71(3–4): 271–304.

    Article  Google Scholar 

  3. Rodi W., Constantinescu G., Stoesser T. Large eddy simulation in hydraulics [C]. Proceedings of 2013 IAHR (The International Association for Hydro-Environment Engineering and Research) World Congress, Beijing, China, 2013.

  4. Stoesser T. Large-eddy simulation in hydraulics: Quo Vadis? [J]. Journal of Hydraulics Research, 2014, 52(4): 441–452.

    Article  Google Scholar 

  5. Constantinescu G. LE of shallow mixing interfaces: A review [J]. Environmental Fluid Mechanics, 2014, 14(5): 971–996.

    Article  Google Scholar 

  6. Smagorinsky J. General circulation experiments with the primitive equations. I. The basic experiment [J]. Monthly Weather Review, 1963, 91(3): 99–164.

    Article  Google Scholar 

  7. Nezu I. Open-channel flow turbulence and its research prospect in the 21st century [J]. Journal of Hydraulic Engineering, ASCE, 2005, 131(4): 229–246.

    Article  Google Scholar 

  8. Adrian R. J., Marusic I. Coherent structures in flow over hydraulic engineering surfaces [J]. Journal of Hydraulics Research, 2012, 50(5): 451–464.

    Article  Google Scholar 

  9. Keylock C. J. Flow resistance in natural, turbulent channel flows: The need for a fluvial fluid mechanics [J]. Water Resources Research, 2015, 51(6): 4374–4390.

    Article  Google Scholar 

  10. Meneveau C. Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows [J]. Annual Reviews of Fluid Mechanics, 2011, 43: 219–245.

    Article  MathSciNet  MATH  Google Scholar 

  11. Li Z., Zhang X. W., He F. Evaluation of vortex criteria by virtue of the quadruple decomposition of velocity gradient tensor [J]. Acta Physica Sinica, 2014, 63(5): 054704.

    Article  Google Scholar 

  12. Keylock C. J. The Schur decomposition of the velocity gradient tensor for turbulent flows [J]. Journal of Fluid Mechanics, 2018, 848: 876–904.

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu C., Gao Y., Tian S. et al. Rortex-A new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 30(3): 035103.

    Article  Google Scholar 

  14. Gao Y., Liu C. Rortex and comparison with eigenvalue-based vortex identification criteria [J]. Physics of Fluids, 2018, 30(8): 85107.

    Article  Google Scholar 

  15. Zhu J. Z. Vorticity and helicity decompositions and dynamics with real Schur form of the velocity gradient [J]. Physics of Fluids, 2018, 30: 031703.

    Article  Google Scholar 

  16. Suman S., Girimaji S. S. Velocity gradient invariants and local flow-field topology in compressible turbulence [J]. Journal of Turbulence, 2010, 11: N2.

    Article  Google Scholar 

  17. Danish M., Suman S., Srinivasan B. A direct numerical simulation-based investigation and modeling of pressure Hessian effects on compressible velocity gradient dynamics [J]. Physics of Fluids, 2014, 26(12): 126103.

    Article  Google Scholar 

  18. Hunt J., Wray A., Moin P. Eddies, streams, and convergence zones in turbulent flows [R]. Proceedings of the Summer Program. Center for Turbulence Research, 1988, 193–208.

  19. Khosronejad A., Sotiropoulos F. Numerical simulation of sand waves in a turbulent open channel flow [J]. Journal of Fluid Mechanics, 2014, 753: 150–216.

    Article  Google Scholar 

  20. McSherry R. J., Chua K. V., Stoesser T. Large eddy simulation of free-surface flows [J]. Journal of Hydrodynamics, 2017, 29(1): 1–12.

    Article  Google Scholar 

  21. Marjoribanks T. I., Hardy R. J., Lane S. N. et al. Does the canopy mixing layer model apply to highly flexible aquatic vegetation? Insights from numerical modelling [J]. Environmental Fluid Mechanics, 2017, 17: 277–301.

    Article  Google Scholar 

  22. Chong M. S., Perry A. E., Cantwell B. J. A general classification of three-dimensional flow fields [J]. Physics of Fluids A, Fluid Dynamics, 1990, 2(5): 765–777.

    Article  MathSciNet  Google Scholar 

  23. Lund T. S., Rogers M. M. An improved measure of strain state probability in turbulent flows [J]. Physics of Fluids, 1994, 6(5): 1838–1847.

    Article  MATH  Google Scholar 

  24. Li Y., Meneveau C. Material deformation in a restricted Euler model for turbulent flows: Analytic solution and numerical tests [J]. Physics of Fluids, 2007, 19(1): 015104.

    Article  MATH  Google Scholar 

  25. Tsinober A. Vortex stretching versus production of strain/dissipation (Turbulence structure and vortex dynamics) [M]. Cambridge, UK: Cambridge University Press, 2001, 164–191.

    MATH  Google Scholar 

  26. Vieillefosse P. Internal motion of a small element of fluid in an inviscid flow [J]. Physica A, 1984, 125(1): 150–162.

    Article  MathSciNet  MATH  Google Scholar 

  27. Laizet S., Nedíc J., Vassilicos C. Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid [J]. International Journal of Computational Fluid Dynamics, 2015, 29(3–5): 286–302.

    Article  Google Scholar 

  28. Beaumard P., Buxton O. R. H., Keylock C. J. The importance of non-normal contributions to velocity gradient tensor dynamics for spatially developing, inhomogeneous, turbulent flows [J]. Journal of Turbulence, 2019, 20(9): 577–598.

    Article  MathSciNet  Google Scholar 

  29. Chacin J. M., Cantwell B. J. Dynamics of a low Reynolds number turbulent boundary layer [J]. Journal of Fluid Mechanics, 2000, 404: 87–115.

    Article  MathSciNet  MATH  Google Scholar 

  30. Cantwell B. J. Exact solution of a restricted Euler equation for the velocity gradient tensor [J]. Physics of Fluids A, 1992, 4: 782–793.

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhu J. Z. Real Schur flow computations, helicity fastening effects and Bagua-pattern cyclones [J]. Physics of Fluids, 2021, 33: 107112.

    Article  Google Scholar 

  32. Ohkitani K., Kishiba S. Nonlocal nature of vortex stretching in an inviscid fluid [J]. Physics of Fluids, 1995, 7(2): 411–421.

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu J. L., Zhao Z., Lu X. Y. Non-normal effect of the velocity gradient tensor and the relevant subgrid-scale model in compressible turbulent boundary layer [J]. Physics of Fluids, 2021, 33: 025103.

    Article  Google Scholar 

  34. Germano M., Piomelli U., Moin P. et al. A dynamic subgrid-scale eddy viscosity model [J]. Physics of Fluids A, 1991, 3(7): 1760–1765.

    Article  MATH  Google Scholar 

  35. Kerr R. M. Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence [J]. Journal of Fluid Mechanics, 1985, 153: 31–58.

    Article  MATH  Google Scholar 

  36. Ashurst W. T., Kerstein A. R., Kerr R. A. et al. Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence [J]. Physics of Fluids, 1987, 30(8): 2343–2353.

    Article  Google Scholar 

  37. Taylor G. I. The spectrum of turbulence [J]. Proceedings of the Royal Society of London, Series A, 1938, 164: 476–490.

    MATH  Google Scholar 

  38. Betchov R. An inequality concerning the production of vorticity in isotropic turbulence [J]. Journal of Fluid Mechanics, 1956, 1: 497–504.

    Article  MathSciNet  MATH  Google Scholar 

  39. Boukharfane R., Er-raiy A., Parsani M. et al. Structure and dynamics of small-scale turbulence in vaporizing two-phase flows [J]. Scientific Reports, 2021, 11: 15242.

    Article  Google Scholar 

  40. Lee S. L. A practical upper bound for departure from normality [J]. SIAM Journal of Matrix Analysis and Applications, 1995, 16(2): 462–468.

    Article  MathSciNet  MATH  Google Scholar 

  41. Keylock C. J. Turbulence at the Lee bound: Maximally non-normal vortex filaments and the decay of a local dissipation rate [J]. Journal of Fluid Mechanics, 2019, 881: 283–312.

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhu J. Z. Thermodynamic and vortic structures of real Schur flows [J]. Journal of Mathematical Physics, 2021, 62: 083101.

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhu J. Z. Compressible helical turbulence: Fastened-structure geometry and statistics [J]. Physics of Plasmas, 2021, 28(3): 032302.

    Article  Google Scholar 

  44. Dong X., Gao Y., Liu C. New normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(1): 011701.

    Article  Google Scholar 

  45. Xu H., Cai X. S., Liu C. Liutex (vortex) core definition and automatic identification for turbulence vortex structures [J]. Journal of Hydrodynamics, 2019, 31(5): 857–863.

    Article  Google Scholar 

  46. Liu C., Yu Y., Gao Y. Liutex based new fluid kinematics [J]. Journal of Hydrodynamics, 2022, 30(3): 355–371.

    Article  Google Scholar 

  47. Lu S. S., Willmarth W. W. Measurements of the structure of the Reynolds stress in a turbulent boundary layer [J]. Journal of Fluid Mechanics, 1973, 60: 481–511.

    Article  Google Scholar 

  48. Nakagawa H., Nezu I. Prediction of the contributions to the Reynolds stress from bursting events in open channel flows [J]. Journal of Fluid Mechanics, 1977, 80: 99–128.

    Article  MATH  Google Scholar 

  49. Keylock C. J., Lane S. N., Richards K. S. Quadrant/octant sequencing and the role of coherent structures in bed load sediment entrainment [J]. Journal of Geophysical Research, 2014, 119: 264–286.

    Article  Google Scholar 

  50. Wan M., Chen S., Eyink G. et al. Johns Hopkins Turbulence Database (JHTDB) [EB/OL]. 2016, http://turbulence.pha.jhu.edu/datasets.aspx.

  51. Li Y., Perlman E., Wan M. et al. A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence [J]. Journal of Turbulence, 2008, 9: N31.

    Article  MATH  Google Scholar 

  52. Graham J., Kanov K., Yang X. et al. A web services accessible database of turbulent channel flow and its use for testing a new integral wall model for LES [J]. Journal of Turbulence, 2016, 17(2): 181–215.

    Article  Google Scholar 

  53. Lee M., Malaya N., Moser R. Petascale direct numerical simulation of turbulent channel flow on up to 786k cores [C]. 2013 SC-International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, 2013.

  54. Comte-Bellot G., Sabot J., Saleh I. Detection of intermittent events maintaining Reynolds stress [C]. Proceedings of the Dynamics of Flow Conference-Dynamic Measurements in Unsteady Flows, Marseille, France, 1978, 213.

  55. Bogard D. G., Tiederman W. G. Burst detection with single-point velocity measurements [J]. Journal of Fluid Mechanics, 1986, 162: 389–413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Keylock.

Additional information

Biography: Christopher J. Keylock, Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keylock, C.J. Studying turbulence structure near the wall in hydrodynamic flows: An approach based on the Schur decomposition of the velocity gradient tensor. J Hydrodyn 34, 806–825 (2022). https://doi.org/10.1007/s42241-022-0068-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0068-6

Key words

Navigation