Skip to main content
Log in

Lagrangian analysis of the fluid transport induced by the interaction of two co-axial co-rotating vortex rings

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In this paper, the fluid transport in the interaction of two co-axial co-rotating vortex rings are investigated. Vortex rings are generated using the piston-cylinder apparatus, and the resulting velocity fields are measured using digital particle image velocimetry. The interaction process is analysed by means of vorticity contour, as well by investigation of the Lagrangian coherent structures (LCSs) defined by the ridges of the finite-time Lyapunov exponent (FTLE). Experimental results demonstrate that two types of vortex interaction are identified, namely strong and weak interactions, respectively. For the strong interaction, the Lagrangian boundaries of the two vortex rings are merged together and form a flux window for fluid transport. For weak interaction, only the Lagrangian drift induced by the motion of the front vortex ring is observed and affects the Lagrangian boundary of the rear vortex ring. Moreover, the fluids transported in the strong interaction carry considerable momentum but no circulation. By contrast, there are nearly no fluxes occurring in the weak interaction. By tracking the variations of circulation and impulse occupied by the separated regions distinguished by the LCSs, it is found that the circulation nearly has no change, but the impulse occupied by vortex core region has significant change. In the strong interaction, the impulse of rear vortex ring decreases but the impulse of the front vortex ring increases. Based on the impulse law, it is speculated that the fluid force generated by the formation of the rear vortex rings can be enhanced. Therefore, the strong interaction between wake vortices can actually improve the propulsive efficiency of the biological systems by operating the formation of large-scale vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dickinson M. H. Wing rotation and the aerodynamic basis of insect flight [J]. Science, 1995, 284(5422): 1954–1960.

    Article  Google Scholar 

  2. Altshuler D. L., Princevac M., Pan H. et al. Wake patterns of the wings and tail of hovering hummingbirds [J]. Experiments in Fluids, 2008, 46(5): 835–846.

    Article  Google Scholar 

  3. Wang X. X., Wu Z. N. Stroke-averaged lift forces due to vortex rings and their mutual interactions for a flapping flight model [J]. Journal of Fluid Mechanics, 2010, 654: 453–472.

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang X. X., Wu Z. N. Lift force reduction due to body image of vortex for a hovering flight model [J]. Journal of Fluid Mechanics, 2012, 709: 648–658.

    Article  MathSciNet  MATH  Google Scholar 

  5. Dabiri J. O. On the estimation of swimming and flying forces from wake measurements [J]. Journal of Experimental Biology, 2005, 208(18): 3519–3532.

    Article  Google Scholar 

  6. Fu Z., Qin S., Liu H. Mechanism of transient force augmentation varying with two distinct timescales for interacting vortex rings [J]. Physics of Fluids, 2014, 26(1): 011901.

    Article  Google Scholar 

  7. Dabiri J. O., Gharib M. Fluid entrainment by isolated vortex rings [J]. Journal of Fluid Mechanics, 2004, 511: 311–331.

    Article  MATH  Google Scholar 

  8. Saffman P. G. Dynamics of vorticity [J]. Journal of Fluid Mechanics, 1981, 106: 49–58.

    Article  MATH  Google Scholar 

  9. Dabiri J. O. Optimal vortex formation as a unifying principle in biological propulsion [J]. Annual Review of Fluid Mechanics, 2009, 41: 17–33.

    Article  MathSciNet  MATH  Google Scholar 

  10. Shariff K., Leonard A. Vortex rings [J]. Annual Review of Fluid Mechanics, 1992, 24: 235–279.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dyson F. W. The potential of an anchor ring [J]. Proceedings of the royal Society of London, 1892, 51: 308–314.

    MATH  Google Scholar 

  12. Yamada H., Matsui T. Preliminary study of mutual slip-through of a pair of vortices [J]. Physics of Fluids, 1978, 21(2): 292–294.

    Article  Google Scholar 

  13. Oshima Y., Kambe T., Asaka S. Interaction of two vortex rings moving along a common axis of symmetry [J]. Journal of the Physical Society of Japan, 1975, 38(4): 1159–1166.

    Article  Google Scholar 

  14. Maxworthy T. The structure and stability of vortex rings [J]. Journal of Fluid Mechanics, 1972, 51: 15–32.

    Article  Google Scholar 

  15. Lim T. T. A note on the leapfrogging between two coaxial vortex rings at low Reynolds numbers [J]. Physics of Fluids A, 1997, 9(1): 239–241.

    Article  Google Scholar 

  16. Oshima Y. The game of passing-through of a pair of vortex rings [J]. Journal of the Physical Society of Japan, 1978, 45(2): 660–664.

    Article  Google Scholar 

  17. Qin S., Liu H., Xiang Y. Lagrangian flow visualization of multiple co-axial co-rotating vortex rings [J]. Journal of Visualization, 2018, 21: 63–71.

    Article  Google Scholar 

  18. Cheng M., Lou J., Lim T. T. Leapfrogging of multiple coaxial viscous vortex rings [J]. Physics of Fluids, 2015, 27(3): 031702.

    Article  Google Scholar 

  19. Qin S., Liu H., Xiang Y. On the formation modes in vortex interaction for multiple co-axial and co-rotating vortex rings [J]. Physics of Fluids, 2018, 30(1): 011901.

    Article  Google Scholar 

  20. Fu Z., Liu H. Transient force augmentation due to counter-rotating vortex ring pairs [J]. Journal of Fluid Mechanics, 2015, 785: 324–348.

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu H., Mughal S., Gowree E. R. et al. Destabilisation and modification of tollmien-schlichting disturbances by a three-dimensional surface indentation [J]. Journal of Fluid Mechanics, 2017, 819: 592–620.

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu H., Lombard J. E. W., Sherwin S. J. Influence of localised smooth steps on the instability of a boundary layer [J]. Journal of Fluid Mechanics, 2017, 817: 138–170.

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu H., Sherwin S. J., Hall P. et al. Behaviors of Tollmien-Schlichting waves undergoing small-scale distortion [J]. Journal of Fluid Mechanics, 2016, 792: 499–525.

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu H., Zhang W., Deng J. et al. Active flow control with rotating cylinders by an artificial neural network trained by deep reinforcement learning [J]. Journal of Hydrodynamics, 2020, 32(2): 254–258.

    Article  Google Scholar 

  25. Dabiri J. O. Note on the induced Lagrangian drift and added-mass of a vortex [J]. Journal of Fluid Mechanics, 2006, 547: 105–113.

    Article  MathSciNet  MATH  Google Scholar 

  26. Shadden S. C., Katija K., Rosenfeld M. et al. Transport and stirring induced by vortex formation [J]. Journal of Fluid Mechanics, 2007, 593: 315–331.

    Article  MATH  Google Scholar 

  27. Sau R., Mahesh K. Passive scalar mixing in vortex rings [J]. Journal of Fluid Mechanics, 2007, 582: 449–461.

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiang Y., Lin H., Zhang B. et al. Quantitative analysis of vortex added-mass and impulse generation during vortex ring formation based on elliptic Lagrangian coherent structures [J]. Experimental Thermal and Fluid Science, 2018, 71: 295–303.

    Article  Google Scholar 

  29. Ruiz L. A., Whittlesey R. W., Dabiri J. O. Vortex-enhanced propulsion [J]. Journal of Fluid Mechanics, 2011, 668: 5–32.

    Article  MATH  Google Scholar 

  30. Liu J. M., Gao Y. S., Wang Y. Q. et al. Objective Omega vortex identification method [J]. Journal of Hydrodynamics, 2019, 31(3): 455–463.

    Article  Google Scholar 

  31. Xu H., Cai X. S., Liu C. Liutex (vortex) core definition and automatic identification for turbulence vortex structures [J]. Journal of Hydrodynamics, 2019, 31(5): 857–863.

    Article  Google Scholar 

  32. Haller G., Yuan G. Lagrangian coherent structures and mixing in two-dimensional turbulence [J]. Physica D, 2000, 147(3–4): 352–370.

    Article  MathSciNet  MATH  Google Scholar 

  33. Haller G. A variational theory of hyperbolic Lagrangian coherent structures [J]. Physica D: Nonlinear Phenomena, 2010, 240(4): 574–598.

    MathSciNet  MATH  Google Scholar 

  34. Green M. A., Rowley C. W., Smits A. J. Using hyperbolic Lagrangian coherent structures to investigate vortices in bioinspired fluid flows [J]. Chaos, 2010, 20(1): 017510.

    Article  MathSciNet  Google Scholar 

  35. Wang L., Feng L. H., Wang J. J. et al. Characteristics and mechanism of mixing enhancement for noncircular synthetic jets at low Reynolds number [J]. Experimental Thermal and Fluid Science, 2018, 98: 731–743.

    Article  Google Scholar 

  36. O’Farrell C., Dabiri J. O. A Lagrangian approach to identifying vortex pinch-off [J]. Chaos, 2010, 20(1): 017513.

    Article  Google Scholar 

  37. Dang C. H., Wang J., Liang Q. Inflows/outflows driven particle dynamics in an idealised lake [J]. Journal of Hydrodynamics, 2019, 31(5): 873–886.

    Article  Google Scholar 

  38. Liang G., Yu B., Zhang B. et al. Hidden flow structures in compressible mixing layer and a quantitative analysis of entrainment based on Lagrangian method [J]. Journal of Hydrodynamics, 2019, 31(2): 256–265.

    Article  Google Scholar 

  39. Gao L., Yu S. C. M. Development of the trailing shear layer in a starting jet during pinch-off [J]. Journal of Fluid Mechanics, 2012, 700: 382–405.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu.

Additional information

Project supported by the of National Basic Research Development Program of China (973 Program, Grant No. 2014CB744802), the National Natural Science Foundation of China (Grant Nos. 91852106, 91841303) and the National Numerical Wind Tunnel Project (Grant No. NNW2019ZT4-B09).

Biography: Hai-yan Lin (1987-), Female, Ph. D. candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Hy., Xiang, Y., Qin, Sy. et al. Lagrangian analysis of the fluid transport induced by the interaction of two co-axial co-rotating vortex rings. J Hydrodyn 32, 1080–1090 (2020). https://doi.org/10.1007/s42241-020-0074-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-020-0074-5

Key words

Navigation