Skip to main content
Log in

Numerical techniques for coupling hydrodynamic problems in ship and ocean engineering

  • Review Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Most hydrodynamic problems in ship and ocean engineering are complex and highly coupled. Under the trend of intelligent and digital design for ships and ocean engineering structures, comprehensive performance evaluation and optimization are of vital importance during design. In this process, various coupling effects need to be accurately predicted. With the significant progress of computational fluid dynamics (CFD), many advanced numerical models were proposed to simulate the complex coupling hydrodynamic problems in ship and ocean engineering field. In this paper, five key coupling hydrodynamic problems are introduced, which are hull-propeller-rudder coupling, wave-floating structure coupling, aerodynamic-hydrodynamic coupling, fluid structure coupling and fluid-noise coupling, respectively. The paper focuses on the numerical simulation techniques corresponding to each coupling problem, including the theories and the applications. Future directions and conclusions are provided finally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stern F., Yang J., Wang Z. et al. Computational ship hydrodynamics: Nowadays and way forward [J]. International Shipbuilding Progress, 2013, 60: 3–105.

    Google Scholar 

  2. Stern F., Kim H. T., Patel V. C. et al. A viscous-flow approach to the computation of propeller-hull interaction [J]. Journal of Ship Research, 1988, 32(4): 246–262.

    Google Scholar 

  3. Kawamura T., Miyata H., Mashimo K. Numerical simulation of the flow about self-propelling tanker models [J]. Journal of Marine Science and Technology, 1997, 2(4): 245–256.

    Google Scholar 

  4. Choi E., Kim J. H., Lee H. G. et al. Computational predictions of ship-speed performance [J]. Journal of Marine Science and Technology, 2009, 14(3): 322–333.

    Google Scholar 

  5. Choi J. E., Min K. S., Kim J. H. et al. Resistance and propulsion characteristics of various commercial ships based on CFD results [J]. Ocean Engineering, 2010, 37(7): 549–566.

    Google Scholar 

  6. Phillips A. B., Turnock S. R., Furlong M. Accurate capture of propeller-rudder interaction using a coupled blade element momentum-RANS approach [J]. Ship Technology Research, 2010, 57(2): 128–139.

    Google Scholar 

  7. Simonsen C. D., Stern F. RANS maneuvering simulation of Esso Osaka with rudder and a body-force propeller [J]. Journal of Ship Research, 2005, 49(2): 98–120.

    Google Scholar 

  8. Dubbioso G., Durante D., Broglia R. Zig-zag maneuver simulation by CFD for tanker like vessel [C]. Proceedings of the 5th International Conference on Computational Methods in Marine Engineering, Hamburg, Germany, 2013, 29–31.

  9. Dubbioso G., Durante D., Di Mascio A. et al. Turning ability analysis of a fully appended twin screw vessel by CFD. Part II: Single vs. twin rudder configuration [J]. Ocean Engineering, 2016, 117: 259–271.

    Google Scholar 

  10. Mofidi A., Martin J. E., Carrica P. M. Propeller/rudder interaction with direct and coupled CFD/potential flow propeller approaches, and application to a zigzag manoeuvre [J]. Ship Technology Research, 2018, 65(1): 10–31.

    Google Scholar 

  11. Kaidi S., Smaoui H., Sergent P. Numerical estimation of bank-propeller-hull interaction effect on ship manoeuvring using CFD method [J]. Journal of Hydrodynamics, 2017, 29(1): 154–167.

    Google Scholar 

  12. Lübke L. O. Numerical simulation of the flow around the propelled KCS [C]. Proceedings of CFD Workshop 2005, Tokyo, Japan, 2005, 9–11.

  13. Queutey P., Deng G., Wackers J. et al. Sliding grids and adaptive grid refinement for RANS Simulation of ship-propeller interaction [J]. Ship Technology Research, 2012, 59(2): 44–57.

    Google Scholar 

  14. Zhu Q., Wang Z., Ling H. et al. Use of the sliding mesh technique to forecast ship self-propulsion performance with propeller in open water [J]. Ship Science and Technology, 2016, 38(9): 42–48.

    Google Scholar 

  15. Badoe C. E., Phillips A. B., Turnock S. R. Influence of drift angle on the computation of hull-propeller-rudder interaction [J]. Ocean Engineering, 2015, 103: 64–77.

    Google Scholar 

  16. Moctar O., Lantermann U., Mucha P. et al. RANS-based simulated ship maneuvering accounting for hull-propulsor-engine interaction [J]. Ship Technology Research, 2014, 61(3): 142–161.

    Google Scholar 

  17. Paik K. J., Park H. G., Seo J. URANS simulations of cavitation and hull pressure fluctuation for marine propeller with hull interaction [C]. Third International Symposium on Marine Propulsors, Launceston, Tasmania, Australia, 2013.

  18. Fujiyama K. Numerical simulation of ship hull pressure fluctuation induced by cavitation on propeller with capturing the tip vortex [C]. Fourth International Symposium on Marine Propulsors, Austin, Texas, USA, 2015.

  19. Han C. Z., Long Y., Ji B. et al. An integral calculation approach for numerical simulation of cavitating flow around a marine propeller behind the ship hull [J]. Journal of Hydrodynamics, 2018, 30(6): 1186–1189.

    Google Scholar 

  20. Long Y., Long X., Ji B. et al. Numerical simulations of cavitating turbulent flow around a marine propeller behind the hull with analyses of the vorticity distribution and particle tracks [J]. Ocean Engineering, 2019, 189: 106310.

    Google Scholar 

  21. Liu D. C., Zhou W. X. Numerical predictions of the propeller cavitation pressure fluctuation behind ship and comparison with experiment [J]. Journal of Ship Mechanics, 2019, 23(3): 245–254(in Chinese).

    Google Scholar 

  22. Carrica P. M., Ismail F., Hyman M. et al. Turn and zigzag maneuvers of a surface combatant using a URANS approach with dynamic overset grids [J]. Journal of Marine Science and Technology, 2013, 18(2): 166–181.

    Google Scholar 

  23. Mofidi A., Carrica P. M. Simulations of zigzag maneuvers for a container ship with direct moving rudder and propeller [J]. Computers and Fluids, 2014, 96: 191–203.

    Google Scholar 

  24. Shen Z., Wan D., Carrica P. M. Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering [J]. Ocean Engineering, 2015, 108: 287–306.

    Google Scholar 

  25. Meng Q. J., Wan D. C. Numerical simulations of viscous flow around the obliquely towed KVLCC2M model in deep and shallow water [J]. Journal of Hydrodynamics, 2016, 28(3): 506–518.

    Google Scholar 

  26. Wang J., Zhao W., Wan D. Free maneuvering simulation of ONR tumblehome using overset grid method in naoe-FOAM-SJTU solver [C]. Proceedings of 31th Symposium on Naval Hydrodynamics, Monterey, USA, 2016.

  27. Wang J., Liu X., Wan D. et al. Numerical prediction of KCS Self-propulsion in shallow water [C]. Proceedings of the Twenty-sixth International Ocean and Polar Engineering Conference, Rhodes, Greece, 2016.

  28. Wang J. H., Wan D. C. Investigation of self-propulsion in waves of fully appended ONR tumblehome model [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(12): 1345–1358.

    Google Scholar 

  29. Wang J., Zou L., Wan D. CFD simulations of free running ship under course keeping control [J]. Ocean Engineering, 2017, 141: 450–464.

    Google Scholar 

  30. Wang J. H., Wan D. C. CFD Investigations of ship maneuvering in waves using naoe-FOAM-SJTU solver [J]. Journal of Marine Science and Application, 2018, 17(3): 443–458.

    Google Scholar 

  31. Lu L., Cheng L., Teng B. et al. Numerical simulation and comparison of potential flow and viscous fluid models in near trapping of narrow gaps [J]. Journal of Hydrodynamics, 2010, 22(5 Suppl. 1): 120–125.

    Google Scholar 

  32. Garrison C. J. Hydrodynamic loading of large offshore structures: Three-dimensional source distribution methods. Numerical methods in offshore engineering [M]. Nottingham, UK: A Wiley-Interscience Publication, 1978, 87–140.

    Google Scholar 

  33. Teng B., Eatock T. R. New higher-order boundary element methods for wave diffraction/radiation [J]. Applied Ocean Research, 1995, 17: 71–78.

    Google Scholar 

  34. Teng B., Bai W., Xiang Y. A B-spline based BEM and its application in predicting wave forces on 3D bodies [J]. China Ocean Engineering, 1999, 13(3): 257–264.

    Google Scholar 

  35. Wang Q., Zhou W., Cheng Y. et al. A line integration method for the treatment of 3D domain integrals and accelerated by the fast multipole method in the BEM [J]. Computational Mechanics, 2016, 59(4):1–14.

    MathSciNet  Google Scholar 

  36. Zhang S., Li X. A self-adaptive projection method for contact problems with the BEM [J]. Applied Mathematical Modelling, 2018, 55: 145–159.

    MathSciNet  MATH  Google Scholar 

  37. Chau F. P., Taylor R. E. Second-order wave diffraction by a vertical cylinder [J]. Journal of Fluid Mechanics, 1992, 240: 571–599.

    MathSciNet  MATH  Google Scholar 

  38. Malenica S., Molin B. Third-harmonic wave diffraction by a vertical cylinder [J]. Journal of Fluid Mechanics, 1995, 302: 203–229.

    MathSciNet  MATH  Google Scholar 

  39. Isaacson M., Cheung K. F. Second order wave diffraction around two-dimensional bodies by time-domain method [J]. Applied Ocean Research, 1991, 13(4): 175–186.

    Google Scholar 

  40. Duan W., Chen J., Zhao B. Second-order Taylor Expansion Boundary Element Method for the second-order wave diffraction problem [J]. Engineering Analysis with Boundary Elements, 2015, 58: 12–26.

    MathSciNet  MATH  Google Scholar 

  41. Xu G., Hamouda A. M. S., Khoo B. C. Time-domain simulation of second-order irregular wave diffraction based on hybrid water wave radiation condition [J]. Applied Mathematical Modelling, 2016, 40(7): 4451–4467.

    MathSciNet  MATH  Google Scholar 

  42. Longuet-Higgins M. S., Cokelet E. D. The deformation of steep surface waves on water. I. A numerical method of computation [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1976, 350(1660): 1–26.

    MathSciNet  MATH  Google Scholar 

  43. Grilli S. T., Subramanya R. Numerical modeling of wave breaking induced by fixed or moving boundaries [J]. Computational Mechanics, 1996, 17(6): 374–391.

    MathSciNet  MATH  Google Scholar 

  44. Stéphan T., Grilli G. P., Frédéric D. A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom [J]. International Journal for Numerical Methods in Fluids, 2001, 35(7): 829–867.

    MATH  Google Scholar 

  45. Feng A. Numerical simulation of nonlinear wave-body problem based on desingularized Rankine source and mixed Euler-Lagrange method [D]. Doctoral Thesis, Southampton, UK: University of Southampton, 2014.

    Google Scholar 

  46. Zhou B. Z., Teng B., Chen L. et al. Modeling of fully nonlinear wave evolution over a submerged bar [J]. Journal of Hydrodynamics, 2010, 22(5 Suppl. 1): 83–90.

    Google Scholar 

  47. Teng B., Gou Y. BEM for wave interaction with structures and low storage accelerated methods for large scale computation [J]. Journal of Hydrodynamics, 2017, 29(5): 748–762.

    Google Scholar 

  48. Castiglione T., Stern F., Bova S. et al. Numerical investiation of the seakeeping behavior of a catamaran advancing in regular head waves [J]. Ocean Engineering, 2011, 38(16): 1806–1822.

    Google Scholar 

  49. Shen Z. R., Ye H. X., Wan D. C. Motion response and added resistance of ship in head waves based on RANS simulations [J]. Chinese Journal of Hydrodynamics, 2012, 27(6): 621–633(in Chinese).

    Google Scholar 

  50. Ye H. X., Shen Z. R., Wan D. C. Numerical prediction of added resistance and vertical ship motions in regular head waves [J]. Journal of Marine Science and Application, 2012, 11(4): 410–416.

    Google Scholar 

  51. Shen Z. R., Ye H. X., Wan D. C. URANS simulations of ship motion responses in long-crest irregular waves [J]. Journal of Hydrodynamics, 2014, 26(3): 436–446.

    Google Scholar 

  52. Liu C., Wang J., Wan D. CFD Computation of wave forces and motions of DTC ship in oblique waves [J]. International Journal of Offshore and Polar Engineering, 2018, 28(2): 154–163.

    Google Scholar 

  53. Danmeier D. G., Seah R. K. M. Validation of wave run-up calculation methods for a gravity based structure [C]. 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 2008.

  54. Cao H. J., Wan D. C. RANS-VOF solver for solitary wave run-up on a circular cylinder [J]. China Ocean Engineering, 2015, 29(2): 183–196.

    Google Scholar 

  55. Liu Y., Wan D. C. Numerical simulation of motion response of an offshore observation platform in waves [J]. Journal of Marine Science and Application, 2013, 12(1): 89–97.

    Google Scholar 

  56. Liu Y., Peng, Y., Wan D. Numerical investigation on interaction between a semi-submersible platform and its mooring system [C]. 34th International Conference on Ocean, Offshore and Arctic Engineering, St. John’s, Newfoundland, Canada, 2015.

  57. Zhuang Y., Wan D. Numerical study of focused waves acting on a fixed FPSO-shaped body [J]. International Journal of Offshore and Polar Engineering, 2019, 29(2): 128–140.

    Google Scholar 

  58. Carrica P. M., Wilson R. V. Unsteady RANS simulation of the ship forward speed diffraction problem [J]. Computers and Fluids, 2006, 35(6): 545–570.

    MATH  Google Scholar 

  59. Carrica P. M., Wilson R. V. Ship motions using singlephase level set with dynamic overset grids [J]. Computers and Fluids, 2006, 36(9): 1415–1433.

    MATH  Google Scholar 

  60. Bihs H., Kamath A., Chella M. A. et al. A new level set numerical wave tank with improved density interpolation for complex wave hydrodynamics [J]. Computers and Fluids, 2016, 140: 191–208.

    MathSciNet  MATH  Google Scholar 

  61. Bihs H., Kamath A., Chella M. A. et al. Breaking-wave interaction with tandem cylinders under different impact scenarios [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2016, 142(5): 04016005.

    Google Scholar 

  62. Chella M. A., Bihs H., Myrhaug D. et al. Breaking solitary waves and breaking wave forces on a vertically mounted slender cylinder over an impermeable sloping seabed [J]. Journal of Ocean Engineering and Marine Energy, 2017, 3(1): 1–19.

    Google Scholar 

  63. Teng B., Mao H. F., Ning D. Z. et al. Viscous numerical examination of hydrodynamic forces on a submerged horizontal circular cylinder undergoing forced oscillation [J]. Journal of Hydrodynamics, 2019, 31(5): 887–899.

    Google Scholar 

  64. Khayyer A., Gotoh H., Shao S. D. Corrected incompressible SPH method for accurate water-surface tracking in breaking waves [J]. Coastal Engineering, 2008, 55(3): 236–250.

    Google Scholar 

  65. Cleary P. W., Rudman M. Extreme wave interaction with a floating oil rig: Prediction using SPH [J]. Progress in Computational Fluid Dynamics, 2009, 9(6–7): 332–334.

    Google Scholar 

  66. Rudman M., Cleary P. W. Rogue wave impact on a tension leg platform: The effect of wave incidence angle and mooring line tension [J]. Ocean Engineering, 2013, 61(6): 123–138.

    Google Scholar 

  67. Rudman M., Cleary P. W. The influence of mooring system in rogue wave impact on an offshore platform [J]. Ocean Engineering, 2016, 115: 168–181.

    Google Scholar 

  68. Ren B., Wen H., Dong P. et al. Improved SPH simulation of wave motions and turbulent flows through porous media [J]. Coastal Engineering, 2016, 107: 14–27.

    Google Scholar 

  69. Shibata K., Koshizuka S., Sakai M. et al. Transparent boundary condition for simulating nonlinear water waves by a particle method [J]. Ocean Engineering, 2011, 38(16): 1839–1848.

    Google Scholar 

  70. Zhang Y., Tang Z., Wan D. Numerical investigations of waves interacting with free rolling body by modified MPS method [J]. International Journal of Computational Methods, 2016, 13(4): 1641013.

    MathSciNet  MATH  Google Scholar 

  71. Zhang Y., Wan D. Numerical study of interactions between waves and free rolling body by IMPS method [J]. Computers and Fluids, 2017, 155: 124–133.

    MathSciNet  MATH  Google Scholar 

  72. Rao C. P., Wan D. C. Numerical study of the wave-induced slamming force on the elastic plate based on MPS-FEM coupled method [J]. Journal of Hydrodynamics, 2018, 30(1): 70–78.

    Google Scholar 

  73. Zhang G. Y., Chen X., Wan D. C. MPS-FEM coupled method for study of wave-structure interaction [J]. Journal of Marine Science and Application, 2019, 18(4): 387–399.

    Google Scholar 

  74. Glauert H. Airplane propellers (Aerodynamic theory) [M]. Berlin, Germany: Springer,1928, 169–360.

    Google Scholar 

  75. Kim S., Sclavounos P. D. Fully coupled response simulations of theme offshore structures in water depths of up to 10,000 feet [C]. Proceedings of the Eleventh International Offshore and Polar Engineering Conference, Stavanger, Norway: The International Society of Offshore and Polar Engineers, 2001.

    Google Scholar 

  76. Kim S. LINES 2001: Nonlinear static and dynamic analysis of mooring line/riser/tether arrays, user manual [Z]. Cambridge, Massachusetts, USA: Massachusetts Institute of Technology, 2004.

    Google Scholar 

  77. Kim S. MOTION 2001: Time-domain response analysis of offshore platforms, user manual [Z]. Cambridge, Massachusetts, USA: Massachusetts Institute of Technology, 2004.

    Google Scholar 

  78. Kim S. SWIM 2001: Frequency-domain analysis of offshore platforms, user manual [Z]. Cambridge, Massachusetts, USA: Massachusetts Institute of Technology, 2004.

    Google Scholar 

  79. Nielsen F. G., Hanson T. D., Skaare B. Integrated dynamic analysis of floating offshore wind turbines [J]. American Society of Mechanical Engineers, 2006, 1: 671–679.

    Google Scholar 

  80. Jonkman J. M. Dynamics modeling and loads analysis of an offshore floating wind turbine [M]. Ann Arbor, Michigan, USA: ProQuest, 2007.

    Google Scholar 

  81. Bae Y. H., Kim M. H., Shin Y. S. Rotor-floater-mooring coupled dynamic analysis of mini TLP-type offshore floating wind turbines [C]. The 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 2010, 3: 491–498.

    Google Scholar 

  82. Bachynski E. E., Kvittem M. I., Luan C. et al. Wind-wave misalignment effects on floating wind turbines: Motions and tower load effects [J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(4): 041902.

    Google Scholar 

  83. Ma Y., Hu Z. Q., Xiao L. F. Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine [J]. Journal of Hydrodynamics, 2015, 26(6): 865–874.

    Google Scholar 

  84. Shen M., Hu Z., Geng T. Coupled hydrodynamic and aerodynamic response analysis of a tension-leg platform floating wind turbine [J]. Journal of Ship Mechanics, 2017, 21(3): 263–174.

    Google Scholar 

  85. Zhou T., He Y., Meng L. Dynamic response analysis of a 6 MW spar-type floating offshore wind turbine under second-order wave forces [J]. Journal of Harbin Institute of Technology, 2018, 50(4): 145–152.

    Google Scholar 

  86. Qu X., Tang Y., Li Y. et al. Motion performance analysis of a floating offshore wind turbine with single-point mooring system under misaligned wind and wave condition [J]. Journal of Harbin Institute of Technology, 2018, 39(8): 1328–1336.

    Google Scholar 

  87. Guo Y., Liu L. Q., Li Y. et al. The surge-heave-pitch coupling motions of the Φ type vertical axis wind turbine supported by the truss Spar floating foundation [J]. Journal of Hydrodynamics, 2019, 31(4): 669–681.

    Google Scholar 

  88. Ren N., Li Y., Ou J. Coupled wind-wave time domain analysis of floating offshore wind turbine based on computational fluid dynamics method [J]. Journal of Renewable and Sustainable Energy, 2014, 6(2): 023106.

    Google Scholar 

  89. Liu Y., Xiao Q., Incecik A. et al. Investigation of the effects of platform motion on the aerodynamics of a floating offshore wind turbine [J]. Journal of Hydrodynamics, 2016, 28(1): 95–101.

    Google Scholar 

  90. Liu Y., Xiao Q., Incecik A. et al. Establishing a fully coupled CFD analysis tool for floating offshore wind turbines [J]. Renewable Energy, 2017, 112: 280–301.

    Google Scholar 

  91. Quallen S., Xing T., Carrica P. et al. CFD simulation of a floating offshore wind turbine system using a quasi-static crowfoot mooring-line model [J]. Journal of Ocean and Wind Energy, 2014, 1(3): 143–152.

    Google Scholar 

  92. Quallen S., Xing T. CFD simulation of a floating offshore wind turbine system using a variable-speed generator-torque controller [J]. Renewable Energy, 2016, 97: 230–242.

    Google Scholar 

  93. Tran T., Kim D. Fully coupled aero-hydrodynamic analysis of a semi- submersible FOWT using a dynamic fluid body interaction approach [J]. Renewable Energy, 2016, 92: 244–261.

    Google Scholar 

  94. Tran T. T., Kim D. H. A CFD study of coupled aerodynamic-hydrodynamic loads on a semisubmersible floating offshore wind turbine [J]. Wind Energy, 2018: 21(1): 70–85.

    MathSciNet  Google Scholar 

  95. Cheng P., Wan D. Fully Coupled aero-hydrodynamic simulation of floating offshore wind turbines with overset grid technology [C]. Proceedings of the Fourth International Conference in Ocean Engineering, Chennai, India, 2018.

  96. Lu H., Porté-Agel F. Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer [J]. Physics of Fluids, 2011, 23(6): 065101.

    Google Scholar 

  97. Cheng P., Wan D. Fully-coupled aero-hydrodynamic simulation of floation offshore wind turbines by different simulation methods [C]. Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 2018.

  98. Huang Y., Wan D., Hu C. Coupled aero-hydrodynamic analysis on a floating offshore wind turbine under extreme sea conditions [C]. Proceedings of the Twenty-seventh (2017) International Ocean and Polar Engineering Conference, San Francisco, CA, USA, 2017.

  99. Huang Y., Cheng P., Wan D. C. Numerical analysis of a floating offshore wind turbine by coupled aero-hydrodynamic simulation [J]. Journal of Marine Science and Application, 2019, 18(1): 82–92.

    Google Scholar 

  100. Cheng P., Huang Y., Wan D. A numerical model for fully coupled aero-hydrodynamic analysis of floating offshore wind turbine [J]. Ocean Engineering, 2019, 173: 183–196.

    Google Scholar 

  101. Ning X., Wan D. LES study of wake meandering in different atmospheric stabilities and its effects on wind turbine aerodynamics [J]. Sustainability, 2019, 11(24): 6939.

    Google Scholar 

  102. Huang Y., Wan D. Investigation of interference effects between wind turbine and spar-type floating platform under combined wind-wave excitation [J]. Sustainability, 2020, 12(1): 246.

    Google Scholar 

  103. Oberhagemann J., Holtmann M., Moctar O. et al. Stern slamming of a LNG carrier [J]. Journal of Offshore Mechanics and Arctic Engineering, 2009, 131(3): 031103.

    Google Scholar 

  104. Maki K. J., Lee D., Troesch A. W. et al. Hydroelastic impact of a wedge-shaped body [J]. Ocean Engineering, 2011, 38(4): 621–629.

    Google Scholar 

  105. Piro D. J, Maki K. J. Hydroelastic analysis of bodies that enter and exit water [J]. Journal of Fluids and Structures, 2013, 37: 134–150.

    Google Scholar 

  106. Lakshmynarayanana P., Temarel P., Chen Z. Coupled fluid structure interaction to model three-dimensional dynamic behaviour of ship in waves [C]. Proceedings of the 7th International Conference on Hydrodynamic in Marine Technology, Split, Croatia, 2015.

  107. Qin H., Tang W., Xue H. et al. Dynamic response of a horizontal plate dropping onto nonlinear freak waves using a fluid-structure interaction method [J]. Journal of Fluids and Structures, 2017, 74: 291–305.

    Google Scholar 

  108. Vuyst T. D., Vignjevic R., Campbell J. C. Coupling between meshless and finite element methods [J]. International Journal of Impact Engineering, 2005, 31: 1054–1064.

    Google Scholar 

  109. Antoci C., Gallati M., Sibilla S. Numerical simulation of fluid-structure interaction by SPH [J]. Computers and Structures, 2007, 85(11–14): 879–890.

    Google Scholar 

  110. Yang Q., Jones V., Mccue L. Free-surface flow interactions with deformable structures using an SPH-FEM model [J]. Ocean Engineering, 2012, 55(15): 136–147.

    Google Scholar 

  111. Hu D., Long T., Xiao Y. et al. Fluid-structure interaction analysis by coupled FE-SPH model based on a novel searching algorithm [J]. Computer Methods in Applied Mechanics and Engineering, 2014, 276: 266–286.

    MathSciNet  MATH  Google Scholar 

  112. Long T., Hu D., Yang G. et al. A particle-element contact algorithm incorporated into the coupling methods of FEM-ISPH and FEM-WCSPH for FSI problems [J]. Ocean Engineering, 2016, 123: 154–163.

    Google Scholar 

  113. Long T., Hu D., Wan D. et al. An arbitrary boundary with ghost particles incorporated in coupled FEM-SPH model for FSI problems [J]. Journal of Computational Physics, 2017, 350: 166–183.

    MathSciNet  MATH  Google Scholar 

  114. Lee C. J. K., Noguchi H., Koshizuka S. Fluid-shell structure interaction analysis by coupled particle and finite element method [J]. Computers and Structures, 2007, 85(11–14): 688–697.

    Google Scholar 

  115. Mitsume N., Yoshimura S., Murotani K. et al. Improved MPS-FE fluid-structure interaction coupled method with MPS polygon wall boundary model [J]. Computer Modeling in Engineering and Sciences, 2014, 101(4): 229–247.

    MathSciNet  MATH  Google Scholar 

  116. Hwang S. C., Park J. C., Gotoh H. et al. Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method [J]. Ocean Engineering, 2016, 118: 227–241.

    Google Scholar 

  117. Zhang Y. L., Chen X., Wan D. C. An MPS-FEM coupled method for the comparison study of liquid sloshing flows interacting with rigid and elastic baffles [J]. Applied Mathematics and Mechanics (Engilsh Edition), 2016, 37(12): 1359–1377.

    Google Scholar 

  118. Zhang Y., Wan D. MPS-FEM coupled method for sloshing flows in an elastic tank [J]. Ocean Engineering, 2018, 152: 416–427.

    Google Scholar 

  119. Zhang Y., Wan D. MPS-FEM coupled method for fluid-structure interaction in 3D dam-break flows [J]. International Journal of Computational Methods, 2019, 16(2): 879–890.

    MathSciNet  MATH  Google Scholar 

  120. Chen X., Zhang Y., Wan D. Numerical study of 3-D liquid sloshing in an elastic tank by MPS-FEM coupled method [J]. Journal of Ship Research, 2019, 63(3): 143–153.

    Google Scholar 

  121. Sun Z., Zhang G. Y., Zong Z. et al. Numerical analysis of violent hydroelastic problems based on a mixed MPS-mode superposition method [J]. Ocean Engineering, 2019, 179: 285–297.

    Google Scholar 

  122. Han L., Hu X. SPH modeling of fluid-structure interaction [J]. Journal of Hydrodynamics, 2018, 30(1): 62–69.

    Google Scholar 

  123. Khayyer A., Gotoh H., Falahaty H. et al. Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction [J]. Journal of Hydrodynamics, 2018, 30(1): 49–61.

    Google Scholar 

  124. Zhang A. M., Sun P. N., Ming F. R. Smoothed particle hydrodynamics and its applications in fluid-structure interactions [J]. Journal of Hydrodynamics, 2017, 29(2): 5–34.

    Google Scholar 

  125. Herfjord K., Drange S. O., Kvamsdal T. Assessment of vortex-induced vibrations on deepwater risers by considering fluid-structure interaction [J]. Journal of Offshore Mechanics and Arctic Engineering, 1999, 121(4): 207–212.

    Google Scholar 

  126. Yamamoto C. T., Meneghini J. R., Saltara F. et al. Numerical simulations of vortex-induced vibration on flexible cylinders [J]. Journal of Fluids and Structures, 2004, 19(4): 467–489.

    Google Scholar 

  127. Duanmu Y., Zou L., Wan D. C. Numerical simulations of vortex-induced vibrations of a flexible riser with different aspect ratios in uniform and shear currents [J]. Journal of Hydrodynamics, 2017, 29(6): 1010–1022.

    Google Scholar 

  128. Duanmu Y., Zou L., Wan D. C. Numerical analysis of multi-modal vibrations of a vertical riser in step currents [J]. Ocean Engineering, 2018, 152: 428–442.

    Google Scholar 

  129. Fu B. W., Zou L., Wan D. C. Numerical study on the effect of current profiles on vortex-induced vibrations in a top-tension riser [J]. Journal of Marine Science and Application, 2017, 16(4): 473–479.

    Google Scholar 

  130. Fu B., Zou L., Wan D. Numerical study of vortex-induced vibrations of a flexible cylinder in an oscillatory flow [J]. Journal of Fluids and Structure, 2018, 77: 170–181.

    Google Scholar 

  131. Bao Y., Palocios R., Sherwin S. Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders [J]. Journal of Computational Physics, 2016, 321: 1079–1097.

    MathSciNet  MATH  Google Scholar 

  132. Bao Y., Zhu H. B., Huan P. et al. Numerical prediction of vortex-induced vibration of flexible riser with thick strip method [J]. Journal of Fluids and Structures, 2019, 89: 166–173.

    Google Scholar 

  133. Meng H., Lien F. S., Li L. Elastic actuator line modelling for wake-induced fatigue analysis of horizontal axis wind turbine blade [J]. Renewable Energy, 2018, 116: 423–437.

    Google Scholar 

  134. Ma Z., Zeng P., Lei L. P. Analysis of the coupled aero elastic wake behaviour of wind turbine [J]. Journal of Fluids and Structures, 2019, 84: 466–484.

    Google Scholar 

  135. Tóth P., Fritzsch A., Lohász M. Application of computational fluid dynamics softwares for 2D acoustical wave propagation [C]. Proceedings of Gépészet 2008 Conference, Budapest, Hungary, 2008.

  136. Nilsson J. Implementation of acoustical analogies in openfoam and calfem [D]. Master Thesis, Lund, Sweden: University of Lund, 2010.

    Google Scholar 

  137. Schmalz J., Kowalczyk W. Implementation of acoustic analogies in OpenFOAM for computation of sound fields [J]. Open Journal of Acoustics, 2015, 5(2): 56914.

    Google Scholar 

  138. Bensow R., Liefvendahl M. An acoustic analogy and scale-resolving flow simulation methodology for the prediction of propeller radiated noise [C]. 31th Symposium on Naval Hydrodynamics, California, 2016.

  139. Cianferra M., Armenio V., Ianniello S. Hydroacoustic noise from different geometries [J]. International Journal of Heat and Fluid Flow, 2018, 70: 348–362.

    Google Scholar 

  140. Ianniello S., Muscari R., Mascio A. Ship underwater noise assessment by the acoustic analogy. Part I: nonlinear analysis of a marine propeller in a uniform flow [J]. Journal of marine science and technology, 2013, 18(4): 547–570.

    Google Scholar 

  141. Nitzkorski Z., Mahesh K. A dynamic end cap technique for sound computation using the Ffowcs Williams and Hawkings equations [J]. Physics of Fluids, 2014, 26(11): 115101.

    Google Scholar 

  142. Lidtke A. K., Turnock S. R., Humphrey V. F. Characterisation of sheet cavity noise of a hydrofoil using the Ffowcs Williams-Hawkings acoustic analogy [J]. Computers and Fluids, 2016, 130: 8–23.

    MathSciNet  MATH  Google Scholar 

  143. Lidtke A. K., Humphrey V. F., Turnock S. R. Feasibility study into a computational approach for marine propeller noise and cavitation modelling [J]. Ocean Engineering, 2016, 120: 152–159.

    Google Scholar 

  144. Zhang N., Xie H., Wang X. et al. Computation of vortical flow and flow induced noise by large eddy simulation with FW-H acoustic analogy and Powell vortex sound theory [J]. Journal of Hydrodynamics, 2016, 28(2): 255–266.

    Google Scholar 

  145. Testa C. Acoustic formulations for aeronautical and naval rotorcraft noise prediction based on the ffowcs williams and hawkings equation [D]. Doctoral Thesis, Delft, The Netherlands: Technische Universiteit Delft, 2008.

    Google Scholar 

  146. Ianniello S., Muscari R., Mascio A. Ship underwater noise assessment by the Acoustic Analogy part II: Hydroacoustic analysis of a ship scaled model [J]. Journal of Marine Science and Technology, 2014, 19(1): 52–74.

    Google Scholar 

  147. Lloyd T., Rijpkema D, Van W. E. Marine propeller acoustic modelling: comparing CFD results with an acoustic analogy method [C]. Proceedings of the Fourth International Symposium on Marine Propulsors (smp’15), Austin, TX, USA, 2015.

  148. Ianniello S. The Ffowcs Williams-Hawkings equation for hydroacoustic analysis of rotating blades. Part 1. The rotpole [J]. Journal of Fluid Mechanics, 2016, 797: 345–388.

    MathSciNet  MATH  Google Scholar 

  149. Cianferra M., Ianniello S., Armenio V. Assessment of methodologies for the solution of the Ffowcs Williams and Hawkings equation using LES of incompressible single-phase flow around a finite-size square cylinder [J]. Journal of Sound and Vibration, 2019, 453: 1–24.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Chang Jiang Scholars Program (Grant No. T2014099), the Shanghai Excellent Academic Leaders Program (Grant No. 17XD1402300) and the Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China (2016-23/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-cheng Wan.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 51879159, 51809169 and 51909160), the National Key Research and Development Program of China (Grant Nos. 2019YFB1704200, 2019YFC0312400).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xs., Wang, Jh. & Wan, Dc. Numerical techniques for coupling hydrodynamic problems in ship and ocean engineering. J Hydrodyn 32, 212–233 (2020). https://doi.org/10.1007/s42241-020-0021-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-020-0021-5

Key words

Navigation