Skip to main content
Log in

Bioinspired Scraper-File Type Frequency-Doubling Ultrasonic Exciter

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In the natural world, leaf-cutting ants cause vibrations through their mutual scraping of file-scraper organs. In this study, we designed a Biomimetic Ultrasonic Exciter (BUE) that imitates leaf-cutting ants. The operating characteristics of the BUE were studied through experimental testing and finite element simulations. The results showed that the BUE could generate stable ultrasonic vibrations, and that the excitation frequency only needed to be half the Output Frequency (OF). This frequency-doubling phenomenon was conducive to achieving BUE miniaturization. To further explore the phenomenon of frequency-doubling vibration output, this study designed scrapers of five different sizes, conducted excitation and first-order natural frequency measurement tests, and the corresponding finite element simulations. It was found that each scraper could operate in frequency-doubling mode, but the operating frequency and natural mode frequencies did not correspond with one another. To further explicate experimental and simulation results, a two-degrees-of-freedom vibration model was developed. It was evident that the contact relationship between the dentate disc and scraper introduced strong nonlinear factors into the system, accounting for the frequency-doubling phenomenon and the difference between the BUE’s operating and mode frequencies. The BUE could be expected to facilitate the production of high-power micro-ultrasonic generators and has potential application value in the fields of mechanical processing, industrial production, and medical health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yao, Y., Pan, Y., & Liu, S. (2020). Power ultrasound and its applications: A state-of-the-art review. Ultrasonics Sonochemistry, 62, 104722. https://doi.org/10.1016/j.ultsonch.2019.104722

    Article  Google Scholar 

  2. Lu, X., Shen, H., Zhao, K., Wang, Z., Peng, H., & Liu, W. (2019). Micro-/Nanomachines driven by ultrasonic power sources. Chemistry An Asian Journal, 14(14), 2406–2416. https://doi.org/10.1002/asia.201900281

    Article  Google Scholar 

  3. Harvey, G., Gachagan, A., & Mutasa, T. (2014). Review of high-power ultrasound-industrial applications and measurement methods. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61(3), 481–495. https://doi.org/10.1109/TUFFC.2014.2932

    Article  Google Scholar 

  4. Zhang, X., Peng, Z., & Zhang, D. (2019). Experimental study on a “Snake-Type” vibration cutting method for cutting force and cutting heat reductions. Biomimetics, 4(3), 57. https://doi.org/10.3390/biomimetics4030057

    Article  Google Scholar 

  5. Peng, Z. L., Zhang, X. Y., Liu, L. B., Xu, G. T., Wang, G., & Zhao, M. H. (2023). Effect of high-speed ultrasonic vibration cutting on the microstructure, surface integrity, and wear behavior of titanium alloy. Journal of Materials Research and Technology, 24, 3870–3888. https://doi.org/10.1016/j.jmrt.2023.04.036

    Article  Google Scholar 

  6. Peng, Z. L., Zhang, X. Y., Zhang, Y., Liu, L. B., Xu, G. T., Wang, G., & Zhao, M. H. (2023). Wear resistance enhancement of Inconel 718 via high-speed ultrasonic vibration cutting and associated surface integrity evaluation under high-pressure coolant supply. Wear, 530–531, 205027. https://doi.org/10.1016/j.wear.2023.205027

    Article  Google Scholar 

  7. Zhang, X., Peng, Z., Li, Z., Sui, H., & Zhang, D. (2020). Influences of machining parameters on tool performance when high-speed ultrasonic vibration cutting titanium alloys. Journal of Manufacturing Processes, 60, 188–199. https://doi.org/10.1016/j.jmapro.2020.10.053

    Article  Google Scholar 

  8. Asami, T., & Miura, H. (2015). Study of ultrasonic machining by longitudinal-torsional vibration for processing brittle materials-observation of machining marks. Physics Procedia, 70, 118–121. https://doi.org/10.1016/j.phpro.2015.08.056

    Article  Google Scholar 

  9. Zhou, H., Zhang, J., Yu, D., Feng, P., Wu, Z., & Cai, W. (2019). Advances in rotary ultrasonic machining system for hard and brittle materials. Advances in Mechanical Engineering, 11(12), 1–13. https://doi.org/10.1177/1687814019895929

    Article  Google Scholar 

  10. Ahmed, Y., Cong, W. L., Stanco, M. R., Xu, Z. G., Pei, Z. J., Treadwell, C., Zhu, Y. L., & Li, Z. C. (2012). Rotary ultrasonic machining of alumina dental ceramics: A preliminary experimental study on surface and subsurface damages. Journal of Manufacturing Science and Engineering, 134, 064501. https://doi.org/10.1115/1.4007711

    Article  Google Scholar 

  11. Jiao, L., Tong, Y., Cui, Y., Chen, J., & Bai, Q. Research on ultrasonic cleaning technology of optical components. 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies (vol. 9281, pp. 239–245). Harbin, China. https://doi.org/10.1117/12.2067895 (2014).

  12. Jundt, J. S., Marchena, J. M., Hanna, I., Dhanda, J., Breit, M. J., & Perry, A. P. (2019). Evolving technologies for tissue tutting. Oral and Maxillofacial Surgery Clinics of North America, 31(4), 549–559. https://doi.org/10.1016/j.coms.2019.07.009

    Article  Google Scholar 

  13. Li, J., Dong, X., Zhang, G., Guo, Z., Zhang, G., & Shi, C. (2021). An enhanced hemostatic ultrasonic scalpel based on the longitudinal-torsional vibration mode. IEEE Access, 9, 10951–10961. https://doi.org/10.1109/ACCESS.2021.3050186

    Article  Google Scholar 

  14. Li, J., Liu, H., Li, J., Yang, Y., & Wang, S. (2020). Piezoelectric transducer design for an ultrasonic scalpel with enhanced dexterity for minimally invasive surgical robots. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(7), 1271–1285. https://doi.org/10.1177/0954406219892750

    Article  Google Scholar 

  15. Dai, J. C., Bailey, M. R., Sorensen, M. D., & Harper, J. D. (2019). Innovations in ultrasound technology in the management of kidney stones. Urologic Clinics of North America, 46(2), 273–285. https://doi.org/10.1016/j.ucl.2018.12.009

    Article  Google Scholar 

  16. Mosquera Seoane, L., Ortiz Salvador, J. B., Budia Alba, A., & Perez Fentes, D. A. (2023). Technological innovations in shock wave lithotripsy. Actas Urológicas Españolas (English Edition), 48(1), 105–110. https://doi.org/10.1016/j.acuroe.2023.09.001

    Article  Google Scholar 

  17. Zhang, K., Gao, G., Zhao, C., Wang, Y., Wang, Y., & Li, J. (2023). Review of the design of power ultrasonic generator for piezoelectric transducer. Ultrasonics Sonochemistry, 96, 106438. https://doi.org/10.1016/j.ultsonch.2023.106438

    Article  Google Scholar 

  18. Kazys, R., & Vaskeliene, V. (2021). High temperature ultrasonic transducers: A review. Sensors, 21(9), 3200. https://doi.org/10.3390/s21093200

    Article  Google Scholar 

  19. Li, Y., Huang, W., & Wang, B. (2022). Design and output characteristics of ultrasonic transducer based on rare-earth giant magnetostrictive material. IEEE Transactions on Magnetics, 58(2), 1–6. https://doi.org/10.1109/TMAG.2021.3080691

    Article  Google Scholar 

  20. Li, P., Liu, Q., Zhou, X., Xu, G., Li, W., Wang, Q., & Yang, M. (2021). Effect of Terfenol-D rod structure on vibration performance of giant magnetostrictive ultrasonic transducer. Journal of Vibration and Control, 27(5–6), 573–581. https://doi.org/10.1177/1077546320932029

    Article  Google Scholar 

  21. Clark, A. U. (2002). The role of ultrasonic whistles for degassing liquids. The University of Manchester.

    Google Scholar 

  22. Gallego-Juárez, J. A., Rodríguez, G., Riera, E., & Cardoni, A. (2015). Power ultrasonics (pp. 793–814). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-33028-6.00026-0

    Book  Google Scholar 

  23. Qiao, F., Roces, F., Schilling, C., & Wurmus, H. Cutting with flexible ultrasound transmission for minimally invasive surgery with biological inspiration. 8th international Conference on New Actuators, Bremen, pp. 668–671 (2002).

  24. Kurosawa, M., & Umehara, Y. (2012). A micro ultrasonic scalpel with modified stepped horn. Electronics and Communications in Japan, 95(8), 44–51. https://doi.org/10.1002/ecj.10414

    Article  Google Scholar 

  25. Friedrich, F., Lockhart, R., Briand, D., Isarakorn, D., Margairaz, P., Sandoz, J.-P., Brossard, J., Keppner, H., Olson, W., Dietz, T., de Rooij, N. F., & Burger, J. Silicon micromachined ultrasonic transducer with improved power transfer for cutting applications. 2012 IEEE International Ultrasonics Symposium, Dresden, pp. 1169–1172. https://doi.org/10.1109/ULTSYM.2012.0291 (2012).

  26. Hofmann, M., Haeberlin, A., de Brot, S., Stahel, A., Keppner, H., & Burger, J. (2023). Development and evaluation of a titanium-based planar ultrasonic scalpel for precision surgery. Ultrasonics, 130, 106927. https://doi.org/10.1016/j.ultras.2023.106927

    Article  Google Scholar 

  27. Kuang, Y., Sadiq, M., Cochran, S., & Huang, Z. (2015). High-power characterization of a microcutter actuated by PMN-PT piezocrystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62(11), 1957–1967. https://doi.org/10.1109/TUFFC.2015.007300

    Article  Google Scholar 

  28. Mckusick, V. A., & Kenneth, W. H. (1959). Félix Savart (1791–1841), physician-physicist: Early studies pertinent to the understanding of murmurs. Journal of the History of Medicine and Allied Sciences, XIV(10), 411–423. https://doi.org/10.1093/jhmas/XIV.10.411

    Article  Google Scholar 

  29. Masters, W. M., Tautz, J., Fletcher, N. H., et al. (1983). Body vibration and sound production in an insect (Atta sexdens) without specialized radiating structures. Journal of Comparative Physiology, 150(2), 239–249. https://doi.org/10.1007/BF00606374

    Article  Google Scholar 

  30. Tautz, J., Roces, F., & Hölldobler, B. (1995). Use of a sound-based vibratome by leaf-cutting ants. Science, 267(5194), 84–87. https://doi.org/10.1126/science.267.5194.84

    Article  Google Scholar 

  31. Markl, H. (1968). Die verständigung durch stridulationssignale bei blattschneiderameisen, II: Erzeugung und eigenschaften der signale. Zeitschrift Für Vergleichende Physiologie, 69(1), 6–37.

    Article  Google Scholar 

  32. Yao, G., Feng, L., Zhang, D., & Jiang, X. (2018). Morphology and mechanical properties of vibratory organs in the leaf-cutting ant (Atta cephalotes). Journal of Bionic Engineering, 15(4), 722–730. https://doi.org/10.1007/s42235-018-0060-6

    Article  Google Scholar 

  33. Schofield, R. M. S., Emmett, K. D., Niedbala, J. C., & Nesson, M. H. (2011). Leaf-cutter ants with worn mandibles cut half as fast, spend twice the energy, and tend to carry instead of cut. Behavioral Ecology and Sociobiology, 65(5), 969–982. https://doi.org/10.1007/s00265-010-1098-6

    Article  Google Scholar 

  34. Schmitz, T. L., & Smith, K. S. (2021). Measurement techniques (pp. 255–282). Springer International Publishing. https://doi.org/10.1007/978-3-030-52344-2_7

    Book  Google Scholar 

  35. Cunha, J., Foltête, E., & Bouhaddi, N. (2008). Evaluation of stiffness of semi-rigid joints in pultruded profiles from dynamic and static data by using model updating technique. Engineering Structures, 30(4), 1024–1036. https://doi.org/10.1016/j.engstruct.2007.06.012

    Article  Google Scholar 

  36. Yang, T., Fan, S.-H., & Lin, C.-S. (2003). Joint stiffness identification using FRF measurements. Computers and Structures, 81(28), 2549–2556. https://doi.org/10.1016/S0045-7949(03)00328-6

    Article  Google Scholar 

  37. Natsiavas, S. (1990). On the dynamics of oscillators with bi-linear damping and stiffness. International Journal of Non-Linear Mechanics, 25(5), 535–554. https://doi.org/10.1016/0020-7462(90)90017-4

    Article  Google Scholar 

  38. Shaw, S. W., & Holmes, P. J. (1983). A periodically forced piecewise linear oscillator. Journal of Sound and Vibration, 90(1), 129–155. https://doi.org/10.1016/0022-460X(83)90407-8

    Article  MathSciNet  Google Scholar 

  39. Wong, C. W., Zhang, W. S., & Lau, S. L. (1991). Periodic forced vibration of unsymmetrical piecewise-linear systems by incremental harmonic balance method. Journal of Sound and Vibration, 149(1), 91–105. https://doi.org/10.1016/0022-460X(91)90913-5

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 91960203, 51975035)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyuan Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Zhang, M., Li, Z. et al. Bioinspired Scraper-File Type Frequency-Doubling Ultrasonic Exciter. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00518-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00518-2

Keywords

Navigation