Skip to main content
Log in

Synergy Between Soft Feet and an Active Tail to Enhance the Climbing Ability of a Bio-inspired Climbing Robot

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Lizards use the synergy between their feet and tail to climb on slopes and vertical terrains. They use their soft adhesive feet with millions of small hairs to increase their contact area with the terrain surface and press their tails against the terrain to actively maintain stability during climbing. Inspired by this, we propose a bio-inspired climbing robot based on a new approach wherein the synergy between soft feet and an active tail with a soft adhesive tip allows the robot to climb stably on even and uneven terrains at different slope angles. We evaluate and compare the climbing performance of the robot on three different terrains (hard, soft, and fluffy) at different slope angles. Various robot configurations are employed, including those with standard hard feet and soft feet in combination with an active tail—with and without a soft tip. The experimental results show that the robot having soft feet and a tail with the soft tip achieves the best climbing performance on all terrains, with maximum climbing slopes of \(40^{\circ }\), \(45^{\circ }\), and \(50^{\circ }\) on fluffy, soft, and hard terrains, respectively. Its payload capacity depends on the type of terrain and the inclination angle. Moreover, our robot performs multi-terrain transitions (climbing from horizontal to sloped terrains) on three different terrains of a slope. This approach can allow a climbing robot to walk and climb on different terrains, extending the operational range of the robot to areas with complex terrains and slopes, e.g., in inspection, exploration, and construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Statements data are available from the authors upon reasonable request.

References

  1. Jagnandan, K., & Higham, T. E. (2017). Lateral movements of a massive tail influence gecko locomotion: An integrative study comparing tail restriction and autotomy. Scientific Reports, 7(1), 1–8.

    Article  Google Scholar 

  2. Martin, J., & Avery, R. A. (1998). Effects of tail loss on the movement patterns of the lizard, Psammodromus algirus. Functional Ecology, 12(5), 794–802.

    Article  Google Scholar 

  3. Wang, Z. Y., Wang, J. T., Ji, A. H., Zhang, Y. Y., & Dai, Z. D. (2011). Behavior and dynamics of gecko’s locomotion: The effects of moving directions on a vertical surface. Chinese Science Bulletin, 56, 573–583.

    Article  Google Scholar 

  4. Wang, Z. Y., Dai, Z. D., Ji, A. H., Ren, L., Xing, Q., & Dai, L. M. (2015). Biomechanics of gecko locomotion: The patterns of reaction forces on inverted, vertical and horizontal substrates. Bioinspiration & Biomimetics, 10(1), 016019.

    Article  Google Scholar 

  5. Wang, W., Ji, A. H., Manoonpong, P., Shen, H., Hu, J., Dai, Z. D., & Yu, Z. W. (2018). Lateral undulation of the flexible spine of sprawling posture vertebrates. Journal of Comparative Physiology A, 204, 707–719.

    Article  Google Scholar 

  6. Siddall, R., Byrnes, G., Full, R. J., & Jusufi, A. (2021). Tails stabilize landing of gliding geckos crashing head-first into tree trunks. Communications Biology, 4(1), 1020.

    Article  Google Scholar 

  7. Jusufi, A., Goldman, D. I., Revzen, S., & Full, R. J. (2008). Active tails enhance arboreal acrobatics in geckos. Proceedings of the National Academy of Sciences, 105(11), 4215–4219.

    Article  Google Scholar 

  8. Nirody, J. A., Jinn, J., Libby, T., Lee, T. J., Jusufi, A., Hu, D. L., & Full, R. J. (2018). Geckos race across the water’s surface using multiple mechanisms. Current Biology, 28(24), 4046–4051.

    Article  Google Scholar 

  9. Ijspeert, A. J. (2020). Amphibious and sprawling locomotion: From biology to robotics and back. Annual Review of Control, Robotics, and Autonomous Systems, 3, 173–193.

    Article  Google Scholar 

  10. Yu, Z. W., Wang, Z. Y., Liu, R., Wang, P., & Dai, Z. D. (2013). Stable gait planning for a gecko-inspired robot to climb on vertical surface. In 2013 IEEE International Conference on Mechatronics and Automation, Takamatsu, Kagawa, Japan (pp. 307–311). IEEE.

  11. Nyakatura, J. A., Melo, K., Horvat, T., Karakasiliotis, K., Allen, V. R., Andikfar, A., Andrada, E., Arnold, P., Lauströer, J., Hutchinson, J. R., Fischer, M. S., & Ijspeert, A. J. (2019). Reverse-engineering the locomotion of a stem amniote. Nature, 565(7739), 351–355.

    Article  Google Scholar 

  12. Karakasiliotis, K., Thandiackal, R., Melo, K., Horvat, T., Mahabadi, N. K., Tsitkov, S., Cabelguen, J. M., & Ijspeert, A. J. (2016). From cineradiography to biorobots: An approach for designing robots to emulate and study animal locomotion. Journal of the Royal Society, Interface, 13(119), 20151089.

    Article  Google Scholar 

  13. Haomachai, W., Shao, D. H., Wang, W., Ji, A. H., Dai, Z. D., & Manoonpong, P. (2021). Lateral undulation of the bendable body of a gecko-inspired robot for energy-efficient inclined surface climbing. IEEE Robotics and Automation Letters, 6(4), 7917–7924.

    Article  Google Scholar 

  14. Shao, D. H., Chen, J., Ji, A. H., Dai, Z. D., & Manoonpong, P. (2020). Hybrid soft-rigid foot with dry adhesive material designed for a gecko-inspired climbing robot. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA (pp. 578–585). IEEE.

  15. Karwa, K. G., Mondal, S., Kumar, A., & Thakur, A. (2016). An open source low-cost alligator-inspired robotic research platform. In 2016 Sixth International Symposium on Embedded Computing and System Design (ISED), Patna, India (pp. 234–238). IEEE.

  16. Daltorio, K. A., Gorb, S., Peressadko, A., Horchler, A. D., Ritzmann, R. E., & Quinn, R. D. (2006). A robot that climbs walls using micro-structured polymer feet. In Climbing and Walking Robots: Proceedings of the 8th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR 2005) (pp. 131–138). Springer Berlin Heidelberg.

  17. Srisuchinnawong, A., Shao, D. H., Ngamkajornwiwat, P., Teerakittikul, P., Dai, Z. D., Ji, A. H., & Manoonpong, P. (2019). Neural control for gait generation and adaptation of a gecko robot. In 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, Brazil (pp. 468–473). IEEE.

  18. Aydin, Y. O., Chong, B., Gong, C., Rieser, J. M., Rankin, J. W., Michel, K., Nicieza, A.G., Hutchinson, J., Choset, H., & Goldman, D. I. (2017). Geometric mechanics applied to tetrapod locomotion on granular media. In Biomimetic and Biohybrid Systems: 6th International Conference, Living Machines 2017, Stanford, CA, USA, July 26–28, 2017, Proceedings 6, CA, USA (pp. 595–603). Springer International Publishing.

  19. Santos, D., Heyneman, B., Kim, S., Esparza, N., & Cutkosky, M. R. (2008). Gecko-inspired climbing behaviors on vertical and overhanging surfaces. In 2008 IEEE International Conference on Robotics and Automation (pp. 1125–1131). IEEE.

  20. Ko, H., Yi, H., & Jeong, H. E. (2017). Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3D printing (UNIclimb). International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 273–280.

    Article  Google Scholar 

  21. Unver, O., Murphy, M., & Sitti, M. (2005). Geckobot and waalbot: Small-scale wall climbing robots. Infotech@ Aerospace, 6940.

  22. Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Mattoli, V., & Cutkosky, M. R. (2007). Whole body adhesion: Hierarchical, directional and distributed control of adhesive forces for a climbing robot. In Proceedings 2007 IEEE International Conference on Robotics and Automation, Roma, Italy (pp. 1268–1273). IEEE.

  23. Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Santos, D., & Cutkosky, M. R. (2008). Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics, 24(1), 65–74.

    Article  Google Scholar 

  24. Yanagida, T., Elara Mohan, R., Pathmakumar, T., Elangovan, K., & Iwase, M. (2017). Design and implementation of a shape shifting rolling-crawling-wall-climbing robot. Applied Sciences, 7(4), 342.

    Article  Google Scholar 

  25. Manoonpong, P., Pasemann, F., & Roth, H. (2007). Modular reactive neurocontrol for biologically inspired walking machines. The International Journal of Robotics Research, 26(3), 301–331.

    Article  Google Scholar 

  26. Seitz, B. F., Goldberg, B., Doshi, N., Ozcan, O., Christensen, D. L., Hawkes, E. W., Cutkosky, M. R., & Wood, R. J. (2014). Bio-inspired mechanisms for inclined locomotion in a legged insect-scale robot. In 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, Indonesia (pp. 791–796). IEEE.

  27. Chong, B., Aydin, Y. O., Gong, C., Sartoretti, G., Wu, Y., Rieser, J. M., Xing, H., Rankin, J., Michel, K., Nicieza, A., Hutchinson, J., Goldman, D., & Choset, H. (2018). Coordination of back bending and leg movements for quadrupedal locomotion. Robotics: Science and Systems, 20.

  28. Shen, H. L., Cai, S. X., Wang, Z., Yuan, Z., Yu, H. B., & Yang, W. G. (2023). A programmable inchworm-inspired soft robot powered by a rotating magnetic field. Journal of Bionic Engineering, 20(2), 506–514.

    Article  Google Scholar 

  29. Chen, G. M., Lin, T., Lodewijks, G., & Ji, A. H. (2023). Design of an active flexible spine for wall climbing robot using pneumatic soft actuators. Journal of Bionic Engineering, 20(2), 530–542.

    Article  Google Scholar 

  30. Tramsen, H. T., Gorb, S. N., Zhang, H., Manoonpong, P., Dai, Z. D., & Heepe, L. (2018). Inversion of friction anisotropy in a bio-inspired asymmetrically structured surface. Journal of the Royal Society Interface, 15(138), 20170629.

    Article  Google Scholar 

  31. Asawalertsak, N., Heims, F., Kovalev, A., Gorb, S. N., Jørgensen, J., & Manoonpong, P. (2023). Frictional anisotropic locomotion and adaptive neural control for a soft crawling robot. Soft Robotics, 10(3), 545–555.

    Article  Google Scholar 

  32. Manoonpong, P., Parlitz, U., & Wörgötter, F. (2013). Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines. Frontiers in Neural Circuits, 7, 12.

    Article  Google Scholar 

  33. Zang, G., Dai, Z., & Manoonpong, P. (2022). Mini review: The roles and comparison of rigid and soft tails in gecko-inspired climbing robots. Frontiers in Bioengineering and Biotechnology, 10, 900389.

    Article  Google Scholar 

  34. Autumn, K., Niewiarowski, P. H., & Puthoff, J. B. (2014). Gecko adhesion as a model system for integrative biology, interdisciplinary science, and bioinspired engineering. Annual Review of Ecology Evolution and Systematics, 45, 445–470.

    Article  Google Scholar 

  35. Borijindakul, P., Ji, A. H., Dai, Z. D., Gorb, S. N., & Manoonpong, P. (2021). Mini review: Comparison of bio-inspired adhesive feet of climbing robots on smooth vertical surfaces. Frontiers in Bioengineering and Biotechnology, 9, 765718.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Worasuchard Haomachai for experimental support. This study was supported by the National Key R &D Program of China, Topic 4-NUAA (Grant No. 2020 YFB1313504) to PM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poramate Manoonpong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 483 KB)

Supplementary file2 (MP4 5678 KB)

Supplementary file3 (MP4 69972 KB)

Supplementary file4 (MP4 18420 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borijindakul, P., Suthisomboon, T., Ji, A. et al. Synergy Between Soft Feet and an Active Tail to Enhance the Climbing Ability of a Bio-inspired Climbing Robot. J Bionic Eng 21, 729–739 (2024). https://doi.org/10.1007/s42235-023-00459-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00459-2

Keywords

Navigation