Skip to main content
Log in

Reinforcement Learning Navigation for Robots Based on Hippocampus Episode Cognition

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Artificial intelligence is currently achieving impressive success in all fields. However, autonomous navigation remains a major challenge for AI. Reinforcement learning is used for target navigation to simulate the interaction between the brain and the environment at the behavioral level, but the Artificial Neural Network trained by reinforcement learning cannot match the autonomous mobility of humans and animals. The hippocampus–striatum circuits are considered as key circuits for target navigation planning and decision-making. This paper aims to construct a bionic navigation model of reinforcement learning corresponding to the nervous system to improve the autonomous navigation performance of the robot. The ventral striatum is considered to be the behavioral evaluation region, and the hippocampal–striatum circuit constitutes the position–reward association. In this paper, a set of episode cognition and reinforcement learning system simulating the mechanism of hippocampus and ventral striatum is constructed, which is used to provide target guidance for the robot to perform autonomous tasks. Compared with traditional methods, this system reflects the high efficiency of learning and better Environmental Adaptability. Our research is an exploration of the intersection and fusion of artificial intelligence and neuroscience, which is conducive to the development of artificial intelligence and the understanding of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Algorithm 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yuan, J., Guo, W., Hou, Z., Zha, F., Li, M., Sun, L., & Wang, P. (2023). Robot navigation strategy in complex environment based on episode cognition. Journal of Bionic Engineering, 20(1), 1–15.

    Article  Google Scholar 

  2. Zhao, Y., Peng, Y., Wen, Y., Han, L., Zhang, H., Zhao, Z., & Liu, X. (2022). A novel movement behavior control method for carp robot through the stimulation of medial longitudinal fasciculus nucleus of midbrain. Journal of Bionic Engineering, 19(5), 1302–1313.

    Article  Google Scholar 

  3. Bermudez-Contreras, E., Clark, B. J., & Wilber, A. (2020). The neuroscience of spatial navigation and the relationship to artificial intelligence. Frontiers in Computational Neuroscience, 14, 63.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chersi, F., & Burgess, N. (2015). The cognitive architecture of spatial navigation: Hippocampal and striatal contributions. Neuron, 88(1), 64–77.

    Article  CAS  PubMed  Google Scholar 

  5. Anggraini, D., Glasauer, S., & Wunderlich, K. (2018). Neural signatures of reinforcement learning correlate with strategy adoption during spatial navigation. Scientific Reports, 8(1), 10110.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189.

    Article  CAS  PubMed  Google Scholar 

  7. Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31(1), 69–89.

    Article  CAS  PubMed  Google Scholar 

  8. Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801–806.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Solstad, T., Boccara, C. N., Kropff, E., Moser, M. B., & Moser, E. I. (2008). Representation of geometric borders in the entorhinal cortex. Science, 322(5909), 1865–1868.

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Høydal, Ø. A., Skytøen, E. R., Andersson, S. O., Moser, M. B., & Moser, E. I. (2019). Object-vector coding in the medial entorhinal cortex. Nature, 568(7752), 400–404.

    Article  ADS  PubMed  Google Scholar 

  11. Taube, J. S., Muller, R. U., & Ranck, J. B. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience, 10(2), 420–435.

    Article  CAS  PubMed  Google Scholar 

  12. Bellmund, J. L., Gärdenfors, P., Moser, E. I., & Doeller, C. F. (2018). Navigating cognition: Spatial codes for human thinking. Science, 362(6415), eaat6766.

    Article  ADS  PubMed  Google Scholar 

  13. Buzsáki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience, 16(2), 130–138.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Foster, D. J., Morris, R. G., & Dayan, P. (2000). A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus, 10(1), 1–16.

    Article  CAS  PubMed  Google Scholar 

  15. Stoianov, I. P., Pennartz, C. M., Lansink, C. S., & Pezzulo, G. (2018). Model-based spatial navigation in the hippocampus-ventral striatum circuit: A computational analysis. PLoS Computational Biology, 14(9), e1006316.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. Johnson, A., & Redish, A. D. (2007). Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. Journal of Neuroscience, 27(45), 12176–12189.

    Article  CAS  PubMed  Google Scholar 

  17. Pezzulo, G., Kemere, C., & Van Der Meer, M. A. (2017). Internally generated hippocampal sequences as a vantage point to probe future-oriented cognition. Annals of the New York Academy of Sciences, 1396(1), 144–165.

    Article  ADS  PubMed  Google Scholar 

  18. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.

    Google Scholar 

  19. McDannald, M. A., Lucantonio, F., Burke, K. A., Niv, Y., & Schoenbaum, G. (2011). Ventral striatum and orbitofrontal cortex are both required for model-based, but not model-free, reinforcement learning. Journal of Neuroscience, 31(7), 2700–2705.

    Article  CAS  PubMed  Google Scholar 

  20. Pezzulo, G., Donnarumma, F., Iodice, P., Maisto, D., & Stoianov, I. (2017). Model-based approaches to active perception and control. Entropy, 19(6), 266.

    Article  ADS  Google Scholar 

  21. Daw, N. D., & Dayan, P. (2014). The algorithmic anatomy of model-based evaluation. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1655), 20130478.

    Article  Google Scholar 

  22. Redish, A. D. (2016). Vicarious trial and error. Nature Reviews Neuroscience, 17(3), 147–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, W., Subagdja, B., Tan, A. H., & Starzyk, J. A. (2012). Neural modeling of episode memory: Encoding, retrieval, and forgetting. IEEE Transactions on Neural Networks and Learning Systems, 23(10), 1574–1586.

    Article  PubMed  Google Scholar 

  24. Yuan, J., Guo, W., Zha, F., Li, M., & Sun, L. (2021). Method of robot episode cognition based on hippocampus mechanism. IEEE Access, 10, 42386–42395.

    Article  Google Scholar 

  25. Pennartz, C. M. A., Ito, R., Verschure, P. F. M. J., Battaglia, F. P., & Robbins, T. W. (2011). The hippocampal–striatal axis in learning, prediction and goal-directed behavior. Trends in Neurosciences, 34(10), 548–559.

    Article  CAS  PubMed  Google Scholar 

  26. Sutton, R. S. (1991). Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart Bulletin, 2(4), 160–163.

    Article  Google Scholar 

  27. Konda, V. R., & Tsitsiklis, J. N. (2003). On actor-critic algorithms. Society for Industrial and Applied Mathematics, 42(4), 1143–1166.

    MathSciNet  Google Scholar 

Download references

Funding

This work was funded by National Key R&D Program of China to Fusheng Zha with Grant numbers 2020YFB13134 and Natural Science Foundation of China to Fusheng Zha with Grant numbers U2013602, 52075115, 51521003,  61911530250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Zha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Guo, W., Hou, Z. et al. Reinforcement Learning Navigation for Robots Based on Hippocampus Episode Cognition. J Bionic Eng 21, 288–302 (2024). https://doi.org/10.1007/s42235-023-00454-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00454-7

Keywords

Navigation