Skip to main content
Log in

Illumination-Free Clustering Using Improved Slime Mould Algorithm for Acute Lymphoblastic Leukemia Image Segmentation

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Partitional clustering techniques such as K-Means (KM), Fuzzy C-Means (FCM), and Rough K-Means (RKM) are very simple and effective techniques for image segmentation. But, because their initial cluster centers are randomly determined, it is often seen that certain clusters converge to local optima. In addition to that, pathology image segmentation is also problematic due to uneven lighting, stain, and camera settings during the microscopic image capturing process. Therefore, this study proposes an Improved Slime Mould Algorithm (ISMA) based on opposition based learning and differential evolution’s mutation strategy to perform illumination-free White Blood Cell (WBC) segmentation. The ISMA helps to overcome the local optima trapping problem of the partitional clustering techniques to some extent. This paper also performs a depth analysis by considering only color components of many well-known color spaces for clustering to find the effect of illumination over color pathology image clustering. Numerical and visual results encourage the utilization of illumination-free or color component-based clustering approaches for image segmentation. ISMA-KM and “ab” color channels of CIELab color space provide best results with above-99% accuracy for only nucleus segmentation. Whereas, for entire WBC segmentation, ISMA-KM and the “CbCr” color component of YCbCr color space provide the best results with an accuracy of above 99%. Furthermore, ISMA-KM and ISMA-RKM have the lowest and highest execution times, respectively. On the other hand, ISMA provides competitive outcomes over CEC2019 benchmark test functions compared to recent well-established and efficient Nature-Inspired Optimization Algorithms (NIOAs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Authors do not have permission to share the data.

References

  1. Labati, R. D., Piuri, V., & Scotti, F. (2011, September). All-IDB: The acute lymphoblastic leukemia image database for image processing. In 2011 18th IEEE International Conference on Image Processing, Brussels, Belguim (pp. 2045–2048). IEEE.

  2. Gurcan, M. N., Boucheron, L. E., Can, A., Madabhushi, A., Rajpoot, N. M., & Yener, B. (2009). Histopathological image analysis: A review. IEEE Reviews in Biomedical Engineering, 2, 147–171.

    Google Scholar 

  3. Irshad, H., Veillard, A., Roux, L., & Racoceanu, D. (2013). Methods for nuclei detection, segmentation, and classification in digital histopathology: A review—current status and future potential. IEEE Reviews in Biomedical Engi- neering, 7, 97–114.

    Google Scholar 

  4. Ray, S., Das, A., Dhal, K. G., G´alvez, J., & Naskar, P. K. (2021). Cauchy with whale optimizer based eagle strategy for multi-level color hematology image segmentation. Neural Computing and Applications, 33, 5917–5949.

    Google Scholar 

  5. Wang, Y., & Cao, Y. (2019). Quick leukocyte nucleus segmentation in leukocyte counting. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2019/3072498

    Article  MATH  Google Scholar 

  6. Ray, S., Dhal, K. G., & Naskar, P. K. (2022). Rough Cuckoo Search: A Novel Mathematics Based Optimization Approach Based on Rough Set. Pattern Recognition and Image Analysis, 32(1), 228–247.

    Google Scholar 

  7. Dhal, K. G., & DasG´alvez, A. J. (2022). A novel fuzzy logic-based improved cuckoo search algorithm. International Journal of Applied Metaheuristic Computing (IJAMC), 13(1), 1–29.

    Google Scholar 

  8. Dhal, K. G., G´alvez, J., Ray, S., Das, A., & Das, S. (2020). Acute lymphoblastic leukemia image segmentation driven by stochastic fractal search. Multimedia Tools and Applications, 79, 12227–12255.

    Google Scholar 

  9. Dhal, K. G., Das, A., Ray, S., & G´alvez, J. (2021). Randomly attracted rough firefly algorithm for histogram based fuzzy image clustering. Knowledge-Based Systems, 216, 106814.

    Google Scholar 

  10. Dhal, K. G., Das, A., Ray, S., Rai, R., & Ghosh, T. K. (2023). Archimedes optimizer-based fast and robust fuzzy clustering for noisy image segmentation. The Journal of Supercomputing, 79(4), 3691–3730.

    Google Scholar 

  11. Abrol, V., Dhalla, S., Gupta, S., Singh, S., & Mittal, A. (2022). An Automated Segmentation of Leukocytes Using Modified Watershed Algorithm on Peripheral Blood Smear Images. 07 June 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1685873/v1].

  12. Angkoso, C. V., Purnama, I. K. E., & Purnomo, M. H. (2018). Automatic white blood cell segmentation based on color segmentation and active contour model. In 2018 International Conference on Intelligent Autonomous Systems (ICoIAS), Singapore (pp. 72–76). IEEE.

  13. Basu, A., Senapati, P., Deb, M., Rai, R., & Dhal, K. G. (2023). A survey on recent trends in deep learning for nucleus segmentation from histopathology images. Evolving Systems. https://doi.org/10.1007/s12530-023-09491-3

    Article  Google Scholar 

  14. Saleem, S., Amin, J., Sharif, M., Anjum, M. A., Iqbal, M., & Wang, S. H. (2022). A deep network designed for segmentation and classification of leukemia using fusion of the transfer learning models. Complex & Intelligent Systems, 8(4), 3105–3120.

    Google Scholar 

  15. Fan, H., Zhang, F., Xi, L., Li, Z., Liu, G., & Xu, Y. (2019). LeukocyteMask: An automated localization and segmentation method for leukocyte in blood smear images using deep neural networks. Journal of Biophotonics, 12(7), e201800488.

    Google Scholar 

  16. Chavolla, E., Zaldivar, D., Cuevas, E., & Perez, M. A. (2018). Color spaces advan- tages and disadvantages in image color clustering segmentation. Advances in Soft Computing and Machine Learning in Image Processing (pp. 3–22). Springer.

    Google Scholar 

  17. Ganesan, P., Rajini, V., Sathish, B. S., Kalist, V., & Basha, S. K. (2015). Satellite image segmentation based on YCbCr color space. Indian Journal of Science and Technology, 8(1), 35.

    Google Scholar 

  18. Su, J., Liu, S., & Song, J. (2017). A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia. Computer Methods and Programs in Biomedicine, 152, 115–123.

    Google Scholar 

  19. Arslan, S., Ozyurek, E., & Gunduz-Demir, C. (2014). A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images. Cytometry Part A, 85(6), 480–490.

    Google Scholar 

  20. Negm, A. S., Hassan, O. A., & Kandil, A. H. (2018). A decision support system for acute leukaemia classification based on digital microscopic images. Alexandria Engineering Journal, 57(4), 2319–2332.

    Google Scholar 

  21. Rege, M. V., Gawali, B. W., & Gaikwad, S. (2019). Performance evaluation of image segmentation process for recognition of leukemia. In Information and Communication Technology for Intelligent Systems: Proceedings of ICTIS 2018, Volume 2 (pp. 499–509), India. Springer Singapore.

  22. Gebremeskel, K. D., Kwa, T. C., Raj, K. H., Zewdie, G. A., Shenkute, T. Y., & Maleko, W. A. (2021). Automatic Early Detection and Classification of Leukemia from Microscopic Blood Image. Abyssinia Journal of Engineering and Computing, 1(1), 1–10.

    Google Scholar 

  23. InbaraniAzar, H. H. A. T. (2020). Leukemia image segmentation using a hybrid histogram-based soft covering rough k-means clustering algorithm. Electronics, 9(1), 188.

    Google Scholar 

  24. Das, A., Namtirtha, A., & Dutta, A. (2022). Fuzzy clustering of Acute Lym- phoblastic Leukemia images assisted by Eagle strategy and morphological reconstruction. Knowledge-Based Systems, 239, 108008.

    Google Scholar 

  25. Das, A., Dhal, K. G., Ray, S., & G´alvez, J. (2022). Histogram-based fast and robust image clustering using stochastic fractal search and morphological reconstruction. Neural Computing and Applications, 34(6), 4531–4554.

    Google Scholar 

  26. Paschos, G. (2001). Perceptually uniform color spaces for color texture analysis: An empirical evaluation. IEEE Transactions on Image Processing, 10(6), 932–937.

    MATH  Google Scholar 

  27. Anilkumar, K. K., Manoj, V. J., & Sagi, T. M. (2018, December). Color based Image Segmentation for Automated Detection of Leukaemia: A comparison between CIELAB and CMYK color spaces. In 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), Istanbul, Turkey (pp. 1–6). IEEE.

  28. Alagu, S., & Bagan, K. B. (2021). Computer assisted classification framework for detection of acute myeloid leukemia in peripheral blood smear images. In Innovations in Computational Intelligence and Computer Vision: Proceedings of ICICV 2020 (pp. 403–410). Springer Singapore.

  29. MoradiAmin, M., Memari, A., Samadzadehaghdam, N., Kermani, S., & Talebi, A. (2016). Computer aided detection and classification of acute lymphoblastic leukemia cell subtypes based on microscopic image analysis. Microscopy Research and Technique, 79(10), 908–916.

    Google Scholar 

  30. Jagadev, P., & Virani, H. G. (2017, May). Detection of leukemia and its types using image processing and machine learning. In 2017 International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India (pp. 522–526). IEEE.

  31. Acharya, V., & Kumar, P. (2019). Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Medical & Biological Engineering & Computing, 57(8), 1783–1811.

    Google Scholar 

  32. Jothi, G., Inbarani, H. H., Azar, A. T., & Devi, K. R. (2019). Rough set theory with Jaya optimization for acute lymphoblastic leukemia classification. Neural Computing and Applications, 31(9), 5175–5194.

    Google Scholar 

  33. Agrawal, R., Satapathy, S., Bagla, G., & Rajakumar, K. (2019). Detection of white blood cell cancer using image processing. In 2019 International Con- ference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), Vellore, India (pp. 1–6). IEEE

  34. Masumdar, R. (2020). Blood Smear Cell Detection and Counting using a Novel K-mean Clustering Algorithm. Doctoral dissertation, California State University, Northridge.

  35. Chien, C. L., & Tseng, D. C. (2011). Color image enhancement with exact HSI color model. International Journal of Innovative Computing, Information and Control, 7(12), 6691–6710.

    Google Scholar 

  36. Kumar, P., & Udwadia, S. M. (2017). Automatic detection of Acute Myeloid Leukemia from microscopic blood smear image. In 2017 Interna- tional Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India (pp. 1803–1807). IEEE.

  37. Dhal, K. G., & Das, S. (2018). Hue preserving color image enhancement models in RGB color space without gamut problem. International Journal of Signal and Imaging Systems Engineering, 11(2), 102–116.

    Google Scholar 

  38. Gasparri, J. P., Bouchet, A., Abras, G., Ballarin, V., & Pastore, J. I. (2011). Medical image segmentation using the HSI color space and Fuzzy Mathematical Morphology. In Journal of Physics: Conference Series (Vol. 332, No. 1, p. 012033). IOP Publishing.

  39. Dhal, K. G., Ray, S., Das, S., Biswas, A., & Ghosh, S. (2019). Hue-preserving and gamut problem-free histopathology image enhancement. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 43(3), 645–672.

    Google Scholar 

  40. Blanco, E., Mazo, M., Bergasa, L. M., Palazuelos, S., & Marron, M. (2007). A method to increase class separation in the HS plane for color segmen- tation applications. In 2007 IEEE International Symposium on Intelligent Signal Processing, Xiamen, China (pp. 1–6). IEEE.

  41. Kuremoto, T., Kinoshita, Y., Feng, L. B., Watanabe, S., Kobayashi, K., & Obayashi, M. (2013). A gesture recognition system with retina-V1 model and one-pass dynamic programming. Neurocomputing, 116, 291–300.

    Google Scholar 

  42. Yang, H. Y., Wang, X. Y., Wang, Q. Y., & Zhang, X. J. (2012). LS-SVM based image segmentation using color and texture information. Journal of Visual Communication and Image Representation, 23(7), 1095–1112.

    Google Scholar 

  43. Liu, W. M., Wang, L. H., & Yang, Z. F. (2010). Application of self adapts to RGB threshold value for robot soccer. In 2010 International Conference on Machine Learning and Cybernetics (Vol. 2, pp. 704–707), Qingdao, China. IEEE.

  44. Khaled, S. M., Saiful Islam, M., Rabbani, M. G., Tabassum, M. R., Gias, A. U., Kamal, M. M., & Islam, S. (2009). Combinatorial color space models for skin detection in sub-continental human images. In Visual Informatics: Bridging Research and Practice: First International Visual Informatics Conference, IVIC 2009 Kuala Lumpur, Malaysia, November 11-13, 2009 Proceedings 1 (pp. 532- 542). Springer Berlin

  45. Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323.

    Google Scholar 

  46. Tang, A. D., Tang, S. Q., Han, T., Zhou, H., & Xie, L. (2021). A modified slime mould algorithm for global optimization. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2021/2298215

    Article  Google Scholar 

  47. Long, W., Jiao, J., Liang, X., Cai, S., & Xu, M. (2019). A random opposition- based learning grey wolf optimizer. IEEE Access, 7, 113810–113825.

    Google Scholar 

  48. Ray, S., Parai, S., Das, A., Dhal, K. G., & Naskar, P. K. (2022). Cuckoo search with differential evolution mutation and Masi entropy for multi-level image segmentation. Multimedia Tools and Applications, 81(3), 4073–4117.

    Google Scholar 

  49. Tizhoosh, H. R. (2005). Opposition-based learning: a new scheme for machine intelligence. In International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06), Vienna, Austria, (Vol. 1, pp. 695–701). IEEE.

  50. Yu, X., Xu, W., & Li, C. (2021). Opposition-based learning grey wolf optimizer for global optimization. Knowledge-Based Systems, 226, 107139.

    Google Scholar 

  51. Muthusamy, H., Ravindran, S., Yaacob, S., & Polat, K. (2021). An improved elephant herding optimization using sine–cosine mechanism and opposition based learning for global optimization problems. Expert Systems with Applications, 172, 114607.

    Google Scholar 

  52. Houssein, E. H., Mahdy, M. A., Fathy, A., & Rezk, H. (2021). A modified Marine Predator Algorithm based on opposition based learning for tracking the global MPP of shaded PV system. Expert Systems with Applications, 183, 115253.

    Google Scholar 

  53. Dhal, K. G., Fister Jr, I., Das, A., Ray, S., & Das, S. (2018). Breast histopathology image clustering using cuckoo search algorithm. In 5th Student Computer Science Research Conference 2018 (StuCoSReC ’18), Ljubljana, Slovenia. (Vol. 43, p. 47–54).

  54. Dhal, K. G., Das, A., Ray, S., & Das, S. (2019). A clustering based classification approach based on modified cuckoo search algorithm. Pattern Recognition and Image Analysis, 29(3), 344–359.

    Google Scholar 

  55. Dhal, K. G., & G´alvez, J., & Das, S. (2020). Toward the modification of flower pollination algorithm in clustering-based image segmentation. Neural Computing and Applications, 32(8), 3059–3077.

    Google Scholar 

  56. Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2–3), 191–203.

    Google Scholar 

  57. Lingras, P., & Peters, G. (2011). Rough clustering. Advanced Review, 1, 64–72.

    Google Scholar 

  58. Dhal, K. G., Das, A., Ray, S., Sarkar, K., & G´alvez, J. (2021). An analytical review on rough set based image clustering. Archives of Computational Methods in Engineering, 29, 1643–1672. https://doi.org/10.1007/s11831-021-09629-z

    Article  Google Scholar 

  59. Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-Qaness, M. A., & Gandomi, A. H. (2021). Aquila optimizer: A novel meta-heuristic optimization algorithm. Computers & Industrial Engineering, 157, 107250.

    Google Scholar 

  60. Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-based systems, 96, 120–133.

    Google Scholar 

  61. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Google Scholar 

  62. Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.

    Google Scholar 

  63. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Google Scholar 

  64. Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory and application. Advances in engineering software, 105, 30–47.

    Google Scholar 

  65. Derrac, J., & Garc´ıa, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolution- ary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.

    Google Scholar 

  66. Thanh, D. N., Erkan, U., Prasath, V. S., Kumar, V., & Hien, N. N. (2019). A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In 2019 6th International Con- ference on Electrical and Electronics Engineering (ICEEE), Istanbul, Turkey, (pp. 116–120). IEEE.

  67. Thawkar, S., Sharma, S., Khanna, M., & kumar Singh, L. (2021). Breast cancer prediction using a hybrid method based on Butterfly Optimization Algorithm and Ant Lion Optimizer. Computers in Biology and Medicine, 139, 104968.

    Google Scholar 

  68. Chakraborty, S., Saha, A. K., Nama, S., & Debnath, S. (2021). COVID-19 X-ray image segmentation by modified whale optimization algorithm with population reduction. Computers in Biology and Medicine, 139, 104984.

    Google Scholar 

  69. Abualigah, L., Habash, M., Hanandeh, E. S., Hussein, A. M., Shinwan, M. A., Zitar, R. A., & Jia, H. (2023). improved reptile search algorithm by salp swarm algorithm for medical image segmentation. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-023-00332-2

    Article  Google Scholar 

  70. Wang, G. G., Deb, S., & Cui, Z. (2019). Monarch butterfly optimization. Neural Computing and Applications, 31, 1995–2014.

    Google Scholar 

  71. Wang, G. G. (2018). Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing, 10(2), 151–164.

    Google Scholar 

  72. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872.

    Google Scholar 

  73. Gharehchopogh, F. S. (2022). An improved tunicate swarm algorithm with best- random mutation strategy for global optimization problems. Journal of Bionic Engineering, 19(4), 1177–1202.

    Google Scholar 

  74. Yuan, Y., Shen, Q., Wang, S., Ren, J., Yang, D., Yang, Q., & Mu, X. (2023). Coronavirus mask protection algorithm: A new bio-inspired optimization algorithm and its applications. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-022-00265-2

    Article  Google Scholar 

  75. Yuan, Y., Ren, J., Wang, S., Wang, Z., Mu, X., & Zhao, W. (2022). Alpine skiing optimization: A new bio-inspired optimization algorithm. Advances in Engineering Software, 170, 103158.

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported with the grant received in research project under RUSA 2.0 component 8, Govt. of India, New Delhi.

Funding

There is no funding associated with this research.

Author information

Authors and Affiliations

Authors

Contributions

KGD: method development, analyzed and interpreted the data and wrote the paper; SR: conceived and designed the experiments; SB: performed the experiments; AD: revised the writing and supervised the experiments;

Corresponding author

Correspondence to Krishna Gopal Dhal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhal, K.G., Ray, S., Barik, S. et al. Illumination-Free Clustering Using Improved Slime Mould Algorithm for Acute Lymphoblastic Leukemia Image Segmentation. J Bionic Eng 20, 2916–2934 (2023). https://doi.org/10.1007/s42235-023-00392-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00392-4

Keywords

Navigation