Skip to main content
Log in

Degradable and Tunable Keratin-fibrinogen Hydrogel as Controlled Release System for Skin Tissue Regeneration

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Biodegradable hydrogels are promising biomaterials for use in controlled-release systems for skin tissue regeneration. Controlled delivery systems constitute an important aspect of tissue engineering because they can modulate various physiological responses, including early immune response, tissue remodeling, and cell proliferation and maturation in the wound-healing process. Hydrogels composed of various biomaterials have been developed to overcome the limitations of conventional drug- or protein-delivery systems, such as limited targeting ability, low stability, and the induction of drug resistance. Hydrogels based on keratin, a natural polymer extracted from human hair, can provide adequate cell support and control homeostasis. Consequently, they can be applied for skin tissue engineering. In this study, we prepared degradable, tunable, and biocompatible hydrogels for controllable protein delivery. We synthesized keratin-fibrinogen (KER-FBG) by the chemical coupling reaction and prepared hydrogels through polymerization with thrombin. The structures and morphologies of the KER-FBG hydrogels were confirmed. Furthermore, the mechanical properties, swelling ratio, degradation, release behavior, and biocompatibility were investigated. The KER-FBG hydrogels presented promising biological performance, indicating that the material is suitable as a controlled protein delivery carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data generated during or analyzed within this study are included in this published article.

References

  1. Priya, S. G., Jungvid, H., & Kumar, A. (2008). Skin tissue engineering for tissue repair and regeneration. Tissue Engineering. Part B, Reviews, 14(1), 105–118.

    Google Scholar 

  2. Jones, I., Currie, L., & Martin, R. (2002). A guide to biological skin substitutes. British Journal of Plastic Surgery, 55(3), 185–193.

    Google Scholar 

  3. Langemo, D. K., & Brown, G. (2006). Skin fails too: acute, chronic, and end-stage skin failure. Advances in Skin & Wound Care, 19(4), 206–211.

    Google Scholar 

  4. Bannasch, H., Fohn, M., Unterberg, T., Bach, A. D., Weyand, B., & Stark, G. B. (2003). Skin tissue engineering. Clinics in Plastic Surgery, 30(4), 573–579.

    Google Scholar 

  5. Huang, S., & Fu, X. B. (2010). Naturally derived materials-based cell and drug delivery systems in skin regeneration. Journal of Controlled Release, 142(2), 149–159.

    Google Scholar 

  6. Peppas, N. A. (1997). Hydrogels and drug delivery. Curr Opinion Colloid Inter Sci, 2(5), 531–537.

    Google Scholar 

  7. Selvan, N. K., Shanmugarajan, T. S., & Uppuluri, V. N. V. A. (2020). Hydrogel based scaffolding polymeric biomaterials: approaches towards skin tissue regeneration. Journal of Drug Delivery Science and Technology, 55, 101456.

    Google Scholar 

  8. Kim, H. E., Lee, H. J., Seong, K. Y., Lee, E. S., Yang, S. Y., & Yoon, J. H. (2015). Visible light-triggered on-demand drug release from hybrid hydrogels and its application in transdermal patches. Advanced Healthcare Materials, 4(14), 2071–2077.

    Google Scholar 

  9. Kharaziha, M., Baidya, A., & Annabi, N. (2021). Rational design of immunomodulatory hydrogels for chronic wound healing. Advanced Materials, 33(39), 2100176.

    Google Scholar 

  10. Tavakoli, S., & Klar, A. S. (2020). Advanced hydrogels as wound dressings. Biomole, 10(8), 1169.

    Google Scholar 

  11. Liang, Y. P., He, J. H., & Guo, B. L. (2021). Functional hydrogels as wound dressing to enhance wound healing. ACS Nano, 15(8), 12687–12722.

    Google Scholar 

  12. Chen, J. Y., He, J. H., Yang, Y. T., Qiao, L. P., Hu, J., Zhang, J., & Guo, B. L. (2022). Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing. Acta Biomaterialia, 146, 119–130.

    Google Scholar 

  13. Li, M., Li, H. C., Li, X. G., Zhu, H., Xu, Z. H., Liu, L. Q., Ma, J. J., & Zhang, M. J. (2017). A bioinspired alginate-gum arabic hydrogel with micro-/nanoscale structures for controlled drug release in chronic wound healing. ACS Applied Materials & Interfaces, 9(27), 22160–22175.

    Google Scholar 

  14. Dreiss, C. A. (2020). Hydrogel design strategies for drug delivery. Current Opinion in Colloid and Interface Science, 48, 1–17.

    Google Scholar 

  15. Mtibe, A., Motloung, M. P., Bandyopadhyay, J., & Ray, S. S. (2021). Synthetic biopolymers and their composites: advantages and limitationsa-an overview. Macromolecular Rapid Communications, 42(15), 2100130.

    Google Scholar 

  16. Sohail, M., Mudassir Minhas, M. U., Khan, S., Hussain, Z., de Matas, M., Shah, S. A., Khan, S., Kousar, M., & Ullah, K. (2019). Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects. Drug Delivery and Translational Research, 9(2), 595–614.

    Google Scholar 

  17. Tabata, Y. (2004). Tissue regeneration based on tissue engineering technology. Congenit Anomal (Kyoto), 44(3), 111–124.

    Google Scholar 

  18. Shavandi, A., Silva, T. H., Bekhit, A. A., & Bekhit, A. E. A. (2017). Keratin: dissolution, extraction and biomedical application. Biomaterials Science, 5(9), 1699–1735.

    Google Scholar 

  19. Wang, B., Yang, W., McKittrick, J., & Meyers, M. A. (2016). Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Progress in Materials Science, 76, 229–318.

    Google Scholar 

  20. Placone, J. K., Navarro, J., Laslo, G. W., Lerman, M. J., Gabard, A. R., Herendeen, G. J., Falco, E. E., Tomblyn, S., Burnett, L., & Fisher, J. P. (2017). Development and characterization of a 3D printed, keratin-based hydrogel. Annals of Biomedical Engineering, 45(1), 237–248.

    Google Scholar 

  21. Pechter, P. M., Gil, J., Valdes, J., Tomic-Canic, M., Pastar, I., Stojadinovic, O., Kirsner, R. S., & Davis, S. C. (2012). Keratin dressings speed epithelialization of deep partial-thickness wounds. Wound Rep Regenerat, 20(2), 236–242.

    Google Scholar 

  22. Ham, T. R., Lee, R. T., Han, S., Haque, S., Vodovotz, Y., Gu, J., Burnett, L. R., Tomblyn, S., & Saul, J. M. (2016). Tunable keratin hydrogels for controlled erosion and growth factor delivery. Biomacromolecules, 17(1), 225–236.

    Google Scholar 

  23. Navarro, J., Clohessy, R. M., Holder, R. C., Gabard, A. R., Herendeen, G. J., Christy, R. J., Burnett, L. R., & Fisher, J. P. (2020). In vivo evaluation of three-dimensional printed, keratin-based hydrogels in a porcine thermal burn model. Tissue Engineering Part A, 26(5–6), 265–278.

    Google Scholar 

  24. Reinke, J. M., & Sorg, H. (2012). Wound repair and regeneration. European Surgical Research, 49, 35–43.

    Google Scholar 

  25. Kumar, V., Bouameur, J. E., Bär, J., Rice, R. H., Hornig-Do, H. T., Roop, D. R., Schwarz, N., Brodesser, S., Thiering, S., Leube, R. E., Wiesner, R. J., Vijayaraj, P., Brazel, C. B., Heller, S., Binder, H., Löffler-Wirth, H., Seibel, P., & Magin, T. M. (2015). A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. Journal of Cell Biology, 211(5), 1057–1075.

    Google Scholar 

  26. Sadeghi, S., Nourmohammadi, J., Ghaee, A., & Soleimani, N. (2020). Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing. International Journal of Biological Macromolecules, 147, 1239–1247.

    Google Scholar 

  27. Choi, W. S., Kim, J. H., Ahn, C. B., Lee, J. H., Kim, Y. J., Son, K. H., & Lee, J. W. (2021). Development of a multi-layer skin substitute using human hair keratinic extract-based hybrid 3D printing. Polymers, 13(16), 2584.

    Google Scholar 

  28. Islam, M. T., Laing, R. M., Wilson, C. A., McConnell, M., & Ali, M. A. (2022). Fabrication and characterization of 3-dimensional electrospun poly(vinyl alcohol)/keratin/chitosan nanofibrous scaffold. Carbohydrate Poly, 275, 118682.

    Google Scholar 

  29. Mitura, S., Sionkowska, A., & Jaiswal, A. (2020). Biopolymers for hydrogels in cosmetics: review. Journal of Materials Science. Materials in Medicine, 31(6), 31–50.

    Google Scholar 

  30. Cao, Y., Yao, Y. Q., Li, Y., Yang, X. X., Cao, Z. Y., & Yang, G. (2019). Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering. Journal of Colloid and Interface Science, 544, 121–129.

    Google Scholar 

  31. Grigsby, W. J., Scott, S. M., Plowman-Holmes, M. I., Middlewood, P. G., & Recabar, K. (2020). Combination and processing keratin with lignin as biocomposite materials for additive manufacturing technology. Acta Biomaterialia, 104, 95–103.

    Google Scholar 

  32. Almany, L., & Seliktar, D. (2005). Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials, 26(15), 2467–2477.

    Google Scholar 

  33. Eyrich, D., Brandl, F., Appel, B., Wiese, H., Maier, G., Wenzel, M., Staudenmaier, R., Goepferich, A., & Blunk, T. (2007). Long-term stable fibrin gels for cartilage engineering. Biomaterials, 28(1), 55–65.

    Google Scholar 

  34. Ao, Q., Wang, S. L., He, Q., Ten, H., Oyama, K., Ito, A., He, J., Javed, R., Wang, A. J., & Matsuno, A. (2020). Fibrin glue/fibronectin/heparin-based delivery system of BMP2 induces osteogenesis in MC3T3-E1 cells and bone formation in rat calvarial critical-sized defects. ACS Applied Materials & Interfaces, 12(11), 13400–13410.

    Google Scholar 

  35. Melly, L., Grosso, A., Stanciu Pop, C., Yu-Hsuan, C., Nollevaux, M. C., Schachtrup, C., Marsano, A., Di Maggio, N., Rondelet, B., & Banfi, A. (2020). Fibrin hydrogels promote scar formation and prevent therapeutic angiogenesis in the heart. Journal of Tissue Engineering and Regenerative Medicine, 14(10), 1513–1523.

    Google Scholar 

  36. Kang, H. J., Ko, N. R., Oh, S. J., An, S. Y., Hwang, Y. S., & Kim, S. Y. (2021). Injectable human kair keratin-fibrinogen hydrogels for engineering 3D microenvironments to accelerate oral tissue regeneration. International Journal of Molecular Sciences, 22(24), 13269.

    Google Scholar 

  37. Guo, W. J., Leu, W. T., Hsiao, S. H., & Liou, G. S. (2006). Thermal degradation behaviour of aromatic poly(ester-amide) with pendant phosphorus groups investigated by pyrolysis-GC/MS. Poly Degrad Stability, 91(1), 21–30.

    Google Scholar 

  38. Yan, Q., Zheng, H. N., Jiang, C., Li, K., & Xiao, S. J. (2015). EDC/NHS activation mechanism of polymethacrylic acid: anhydride versus NHS-ester. RSC Advances, 5(86), 69939–69947.

    Google Scholar 

  39. Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474–5491.

    Google Scholar 

  40. Luo, T. Y., Tan, B. W., Zhu, L. J., Wang, Y. T., & Liao, J. F. (2022). A review on the design of hydrogels with different stiffness and their effects on tissue repair. Frontiers in Bioengineering and Biotechnology, 10, 817391.

    Google Scholar 

  41. Xue, R. Y., Li, J. Y. S., Yeh, Y. T., Yang, L., & Chien, S. (2013). Effects of matrix elasticity and cell density on human mesenchymal stem cells differentiation. Journal of Orthopaedic Research, 31(9), 1360–1365.

    Google Scholar 

  42. Gu, Y., Ji, Y. W., Zhao, Y. H., Liu, Y., Ding, F., Gu, X. S., & Yang, Y. M. (2012). The influence of substrate stiffness on the behavior and functions of Schwann cells in culture. Biomaterials, 33(28), 6672–6681.

    Google Scholar 

  43. Peng, Q. Y., Chen, J. S., Wang, T., Peng, X. W., Liu, J. F., Wang, X. G., Wang, J. M., & Zeng, H. B. (2020). Recent advances in designing conductive hydrogels for flexible electronics. Infomat, 2(5), 843–865.

    Google Scholar 

  44. Zhang, X. N., Wang, Y. J., Sun, S. T., Hou, L., Wu, P. Y., Wu, Z. L., & Zheng, Q. (2018). A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction. Macromolecules, 51(20), 8136–8146.

    Google Scholar 

  45. Hoare, T. R., & Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8), 1993–2007.

    Google Scholar 

  46. Rawn, J. D., & Ouellette, R. J. (2018). Organic Chemistry: Structure, Mechanism, Synthesis (pp. 763–799). Cambridge US: Academic Press.

    Google Scholar 

  47. Hori, K., Sotozono, C., Hamuro, J., Yamasaki, K., Kimura, Y., Ozeki, M., Tabata, Y., & Kinoshita, S. (2007). Controlled-release of epidermal growth factor from cationized gelatin hydrogel enhances corneal epithelial wound healing. Journal of Controlled Release, 118(2), 169–176.

    Google Scholar 

  48. Babich, H., & Sinensky, M. C. (2001). Indirect cytotoxicity of dental materials: a study with Transwell inserts and the neutral red uptake assay. Altern Lab Ani, 29(1), 9–13.

    Google Scholar 

  49. Werner, S., Krieg, T., & Smola, H. (2007). Keratinocyte-fibroblast interactions in wound healing. The Journal of Investigative Dermatology, 127(5), 998–1008.

    Google Scholar 

  50. Zhu, J. M., & Marchant, R. E. (2011). Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices, 8(5), 607–626.

    Google Scholar 

  51. Bordeleau, F., Bessard, J., Sheng, Y. L., & Marceau, N. (2008). Keratin contribution to cellular mechanical stress response at focal adhesions as assayed by laser tweezers. Biochemistry and Cell Biology, 86(4), 352–359.

    Google Scholar 

  52. Laly, A. C., Sliogeryte, K., Pundel, O. J., Ross, R., Keeling, M. C., Avisetti, D., Waseem, A., Gavara, N., & Connelly, J. T. (2021). The keratin network of intermediate filaments regulates keratinocyte rigidity sensing and nuclear mechanotransduction. Science Advances, 7(5), 6187.

    Google Scholar 

  53. Feroz, S., Muhammad, N., Ratnayake, J., & Dias, G. (2020). Keratin—Based materials for biomedical applications. Bioactive Materials, 5(3), 496–509.

    Google Scholar 

  54. Borrelli, M., Joepen, N., Reichl, S., Finis, D., Schoppe, M., Geerling, G., & Schrader, S. (2015). Keratin films for ocular surface reconstruction: evaluation of biocompatibility in an in-vivo model. Biomaterials, 42, 112–120.

    Google Scholar 

  55. Lin, C. W., Chen, Y. K., Tang, K. C., Yang, K. C., Cheng, N. C., & Yu, J. S. (2019). Keratin scaffolds with human adipose stem cells: Physical and biological effects toward wound healing. Journal of Tissue Engineering and Regenerative Medicine, 13(6), 1044–1058.

    Google Scholar 

Download references

Acknowledgements

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2020R1A2C2011937, 2020R1C1C1007129), a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare (HI22C1572) and R&BD Program through the INNOPOLIS funded by Ministry of Science and ICT (2021-IT-RD-0059-01-101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Il Keun Kwon or Dong Nyoung Heo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, S.J., Lee, J.S., Nah, H. et al. Degradable and Tunable Keratin-fibrinogen Hydrogel as Controlled Release System for Skin Tissue Regeneration. J Bionic Eng 20, 1049–1059 (2023). https://doi.org/10.1007/s42235-022-00317-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00317-7

Keywords

Navigation