Skip to main content
Log in

Snake-Hot-Eye-Assisted Multi-Process-Fusion Target Tracking Based on a Roll-Pitch Semi-strapdown Infrared Imaging Seeker

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Aiming at intercepting large maneuvering targets precisely, the guidance law of advanced self-seeking missiles requires not only inertial line-of-sight (LOS) angular rate but also target maneuvering acceleration. Moreover, the semi-strapdown stabilization platform has lost the ability to measure the inertial LOS angular rate directly, which needs to be extracted by numerical calculation. The differential operation commonly used in traditional methods can magnify the measurement error of the sensor, resulting in insufficient calculation accuracy of the line-of-sight angular rate. By analyzing the mathematical relationship between the missile–target relative motion and the angle tracking system, a multi-process-fusion integrated filter model of relative motion and angle tracking is presented. To overcome the defect that the infrared seeker cannot directly measure the missile–target distance, following the snake-hot-eye visual mechanism, a visual bionic imaging guidance method of estimating the missile–target relative distance from the infrared images is proposed to improve the observability of the filter model. Finally, target-tracking simulations verify that the estimation accuracy of target acceleration is improved by four times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Song, J. M., Cai, G. H., Kong, L. X., & Fan, J. H. (2012). The guidance system design of the semi-strapdown homing guided missile. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 226(6), 761–774.

    Google Scholar 

  2. Huang, L., Song, J. M., Zhang, M. Q., & Cai, G. H. (2016). Optical flow based guidance system design for semi-strapdown image homing guided missiles. Chinese Journal of Aeronautics, 29(5), 1345–1354.

    Google Scholar 

  3. Yang, B. Q., Xu, L. Y., & Yao, Y. (2011). LOS information reconstruction of half strapdown seeker [J]. Journal of Beijing University of Aeronautics and Astronautics, 37(7), 839–843.

    Google Scholar 

  4. Ekstrand, B. (2001). Tracking filters and models for seeker applications. IEEE Transactions on Aerospace and Electronic Systems, 37(3), 965–977.

    Google Scholar 

  5. Jia, X. Y., & Zhao, C. (2011). New stabilization control and guidance information extract approach with a semi-strapdown structure. Infrared and Laser Engineering, 40(12), 2474–2479.

    Google Scholar 

  6. Zhou, R. Q., & Wang, W. (2005). Study of design and simulation of cross-coupling tracking filter for strapdown antenna platform. Acta Simulata Systematica Sinica, 17, 2691–2695.

    Google Scholar 

  7. Zhou, R.Q. (2004). Study of Stabilization Technology and Design of Angle Tracking System for Missileborne Strapdown Antenna Platform (Doctoral dissertation, Ph. D. thesis, School of Electronics and Information Engineering, Beijing Univ. of Aeronautics and Astronautics, Beijing).

  8. Yang, B. Q., Yao, Y., & He, F. H. (2009). Passive ranging based on observability analysis and receding horizon filter. Tsinghua Science and Technology, 14, 32–37.

    Google Scholar 

  9. Rhee, I., Abdel-Hafez, M. F., & Speyer, J. L. (2004). On the observability of strapdown INS system during maneuvers. IEEE Transactions on Aerospace and Electronic Systems, 40(2), 526–536.

    Google Scholar 

  10. Yun, J., Ryoo, C.K., & Song, T.L. (2008). Strapdown sensors and seeker based guidance filter design. In 2008 International Conference on Control, Automation and Systems (pp. 468–472). IEEE.

  11. Xiao, Y. C., Zhou, J., & Zhao, B. (2020). Attitude dynamics aiding for three-dimensional passive target tracking of strap-down seeker based on instrumental variable Kalman filter. Transactions of the Institute of Measurement and Control, 42(14), 2645–2659.

    Google Scholar 

  12. Wu, P., Mu, R., & Deng, Y. (2017). Review of intelligent bionic vision navigation. In LIDAR Imaging Detection and Target Recognition 2017 (Vol. 10605, p. 106053F). International Society for Optics and Photonics.

  13. Lv, M., Zi, F., & Li, Y. (2007). Vision bionics and application on the design of imaging guidance head. In MIPPR 2007: Automatic Target Recognition and Image Analysis and Multispectral Image Acquisition (Vol. 6786, p. 678658). International Society for Optics and Photonics.

  14. Franceschini, N. (2004). Visual guidance based on optic flow: A biorobotic approach. Journal of Physiology-Paris, 98(1–3), 281–292.

    Google Scholar 

  15. Song, Y. M., Xie, Y., Malyarchuk, V., Xiao, J., Jung, I., Choi, K. J., Liu, Z. J., Park, H., Lu, C. F., Kim, R. H., Crozier, K. B., Huang, Y. G., & Rogers, J. A. (2013). Digital cameras with designs inspired by the arthropod eye. Nature, 497(7447), 95–99.

    Google Scholar 

  16. Hartbauer, M. (2017). Simplified bionic solutions: A simple bio-inspired vehicle collision detection system. Bioinspiration and Biomimetics, 12(2), 026007.

    Google Scholar 

  17. Khamukhin, A.A. (2017). A simple algorithm for distance estimation without radar and stereo vision based on the bionic principle of bee eyes. In IOP Conference Series: Materials Science and Engineering (Vol. 177, No. 1, p. 012028). IOP Publishing.

  18. Cheng, Y., Cao, J., Zhang, Y., & Hao, Q. (2019). Review of state-of-the-art artificial compound eye imaging systems. Bioinspiration and Biomimetics, 14(3), 031002.

    Google Scholar 

  19. Liu, F., Bian, H., Zhang, F., Yang, Q., Shan, C., Li, M., Hou, X., & Chen, F. (2020). IR artificial compound eye. Advanced Optical Materials, 8(4), 1901767.

    Google Scholar 

  20. Phan, H. L., Yi, J., Bae, J., Ko, H., Lee, S., Cho, D., Seo, J. M., & Koo, K. I. (2021). Artificial compound eye systems and their application: A review. Micromachines, 12(7), 847.

    Google Scholar 

  21. Duan, H., Deng, Y., Wang, X., & Liu, F. (2013). Biological eagle-eye-based visual imaging guidance simulation platform for unmanned flying vehicles. IEEE Aerospace and Electronic Systems Magazine, 28(12), 36–45.

    Google Scholar 

  22. Thiele, S., Arzenbacher, K., Gissibl, T., Giessen, H., & Herkommer, A. M. (2017). 3D-printed eagle eye: Compound microlens system for foveated imaging. Science advances, 3(2), e1602655.

    Google Scholar 

  23. Deng, Y., & Duan, H. (2018). Biological eagle-eye-based visual platform for target detection. IEEE Transactions on Aerospace and Electronic Systems, 54(6), 3125–3136.

    Google Scholar 

  24. Duan, H., Xin, L., Xu, Y., Zhao, G., & Chen, S. (2020). Eagle-vision-inspired visual measurement algorithm for UAV’s autonomous landing. International Journal of Robotics and Automation. https://doi.org/10.2316/J.2020.206-0221

    Article  Google Scholar 

  25. Duan, H., Sun, Y., & Shi, Y. (2020). Bionic visual control for probe-and-drogue autonomous aerial refueling. IEEE Transactions on Aerospace and Electronic Systems, 57(2), 848–865.

    Google Scholar 

  26. Li, X., Duan, H., Li, J., Deng, Y., & Wang, F. Y. (2022). Biological eagle eye-based method for change detection in water scenes. Pattern Recognition, 122, 108203.

    Google Scholar 

  27. Zhou, Z., Gong, Y., Yang, D., Schmitz, A., & Schmitz, H. (2016). Function modeling of the infrared organ of “little ash beetle” Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). Journal of Bionic Engineering, 13(4), 650–658.

    Google Scholar 

  28. Wang, Y., Liu, H., & Wang, X. (2021). Pseudo color fusion of infrared and visible images based on the rattlesnake vision imaging system. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-021-00127-3

    Article  Google Scholar 

  29. Zhao, H., Zhou, B., Liu, P., & Zhao, T. (2014). Modulating a local shape descriptor through biologically inspired color feature. Journal of Bionic Engineering, 11(2), 311–321.

    Google Scholar 

  30. Wang, Y., Hu, X., Lian, J., Zhang, L., & He, X. (2017). Bionic orientation and visual enhancement with a novel polarization camera. IEEE Sensors Journal, 17(5), 1316–1324.

    Google Scholar 

  31. Cheng, H., Chu, J., Zhang, R., Gui, X., & Tian, L. (2020). Real-time position and attitude estimation for homing and docking of an autonomous underwater vehicle based on bionic polarized optical guidance. Journal of Ocean University of China, 19(5), 1042–1050.

    Google Scholar 

  32. Liu, F., Wang, K., Liu, Y., Kang, B., Han, Z., & Hou, T. (2019). A Bionic vibration source localization device inspired by the hunting localization mechanism of scorpions. Journal of Bionic Engineering, 16(6), 1019–1029.

    Google Scholar 

  33. Jiang, Y., Fu, J., Zhang, D., & Zhao, Y. (2016). Investigation on the lateral line systems of two cavefish: Sinocyclocheilus macrophthalmus and S. microphthalmus (Cypriniformes: Cyprinidae). Journal of Bionic Engineering, 13(1), 108–114.

    Google Scholar 

  34. Zhai, Y., Zheng, X., & Xie, G. (2021). Fish lateral line inspired flow sensors and flow-aided control: A review. Journal of Bionic Engineering, 18(2), 264–291.

    Google Scholar 

  35. Harris, J., & Gamow, R. (1971). Snake infrared receptors: Thermal or photochemical mechanism? Science, 172(3989), 1252–1253.

    Google Scholar 

  36. Gracheva, E. O., Ingolia, N. T., Kelly, Y. M., Cordero-Morales, J. F., Hollopeter, G., Chesler, A. T., & Julius, D. (2010). Molecular basis of infrared detection by snakes. Nature, 464(7291), 1006–1011.

    Google Scholar 

  37. Fang, J. (2010). Snake infrared detection unravelled. Nature. https://doi.org/10.1038/news.2010.122

    Article  Google Scholar 

  38. Sichert, A. B., Friedel, P., & Hemmen, J. L. (2006). Modelling imaging performance of snake infrared sense. Physics, 223, 219–223.

    Google Scholar 

  39. Panzano, V. C., Kang, K., & Garrity, P. A. (2010). Infrared snake eyes: TRPA1 and the thermal sensitivity of the snake pit organ. Science Signaling, 3(127), 22.

    Google Scholar 

  40. Amemiya, F., Goris, R. C., Masuda, Y., Kishida, R., Atobe, Y., Ishii, N., & Kusunoki, T. (1995). The surface architecture of snake infrared receptor organs. Biomedical Research, 16(6), 411–421.

    Google Scholar 

  41. Grace, M. S., Woodward, O. M., Church, D. R., & Calisch, G. (2001). Prey targeting by the infrared-imaging snake Python molurus: Effects of experimental and congenital visual deprivation. Behavioural Brain Research, 119(1), 23–31.

    Google Scholar 

  42. Molenaar, G. J. (1978). The sensory trigeminal system of a snake in the possession of infrared receptors. I. The sensory trigeminal nuclei. Journal of Comparative Neurology, 179(1), 123–135.

    Google Scholar 

  43. Jones, B. S., Lynn, W. F., & Stone, M. O. (2001). Thermal modeling of snake infrared reception: Evidence for limited detection range. Journal of Theoretical Biology, 209(2), 201–211.

    Google Scholar 

  44. Campbell, A. L., Naik, R. R., Sowards, L., & Stone, M. O. (2002). Biological infrared imaging and sensing. Micron, 33(2), 211–225.

    Google Scholar 

  45. Ebert, J., & Westhoff, G. (2006). Behavioural examination of the infrared sensitivity of rattlesnakes (Crotalus atrox). Journal of Comparative Physiology A, 192(9), 941–947.

    Google Scholar 

  46. Goris, R. C., & Terashima, S. (1976). The structure and function of the infrared receptors of snakes. Progress in Brain Research, 43, 159–170.

    Google Scholar 

  47. Schraft, H. A., Bakken, G. S., & Clark, R. W. (2019). Infrared-sensing snakes select ambush orientation based on thermal backgrounds. Scientific Reports, 9(1), 1–6.

    Google Scholar 

  48. Rundus, A. S., Owings, D. H., Joshi, S. S., Chinn, E., & Giannini, N. (2007). Ground squirrels use an infrared signal to deter rattlesnake predation. Proceedings of the National Academy of Sciences, 104(36), 14372–14376.

    Google Scholar 

  49. Goris, R. C. (2011). Infrared organs of snakes: An integral part of vision. Journal of Herpetology, 45(1), 2–14.

    MathSciNet  Google Scholar 

  50. Zhou, H. R., & Kumar, K. S. P. (1984). A ‘current’ statistical model and adaptive algorithm for estimating maneuvering targets. Journal of Guidance, Control, and Dynamics, 7(5), 596–602.

    Google Scholar 

Download references

Funding

This work is sponsored by the National Natural Science Foundation of China under Grant No. 51979275, the Joint Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering and Tsinghua—Ningxia Yinchuan Joint Institute of Internet of Waters on Digital Water Governance under Grant No. sklhse-2022-Iow08, the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources under Grant No. KF-2021-06-115, the National Key R&D Program of China under Grant No. 2018YFD0700603, and the 2115 Talent Development Program of China Agricultural University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JC, KY and ZR; methodology: JC, KY and ZR; software: ZZ and KY; validation: JC, ZZ and KY; formal analysis: ZZ, KY and YH; investigation: JC and YH; data curation: ZZ and KY; writing—original draft preparation: JC, ZZ and KY; writing—review and editing: YH; supervision: JC and YH; project administration: JC and YH; funding acquisition: JC and YH. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yu Han.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, Z., Yi, K. et al. Snake-Hot-Eye-Assisted Multi-Process-Fusion Target Tracking Based on a Roll-Pitch Semi-strapdown Infrared Imaging Seeker. J Bionic Eng 19, 1124–1139 (2022). https://doi.org/10.1007/s42235-022-00195-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00195-z

Keywords

Navigation