Skip to main content
Log in

Comparative Studies on Wet Attaching Abilities of Different Salamander Species

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Salamanders have evolved functions of attaching to a variety of surfaces under wet conditions, but racial diversity may cause a difference in attachment behaviors and epidermal characteristics. The sticking and climbing abilities of the Chinese Fire Belly Newt (CFBN), Chinese Warts Triton (CWT), Spotless Stout Newt (SSN), and Chinese Giant Salamander (CGS) on various surfaces were investigated and compared in terms of epidermal morphology, body size, and wettability. The results indicate that the spotless stout newt has an excellent ability for wet attachment, compared to other salamanders under a certain contact case, resulting from its lower mass/body surface area and more visible epidermal structures. Supplementation with moderate water is beneficial for salamander attachment, and the surface roughness in the flood case also promotes the wet attachment. The CFBN has the most hydrophilic epidermis among the samples, where the water droplet quickly spreads over, presenting a completely wetting case. This study offers a comprehensive understanding of the wet attachments and the epidermal characteristics of salamanders, which is meaningful for the application of bioinspired adhesives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gorb, S. N. (2010). Biological and biologically inspired attachment systems (pp. 1525–1551). Berlin, Heidelberg: Springer Handbook of Nanotechnology, Springer.

    Google Scholar 

  2. Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., Fearing, R., & Full, R. J. (2000). Adhesive force of a single gecko foot-hair. Nature, 405, 681–685.

    Article  Google Scholar 

  3. Autumn, K., & Gravish, N. (2008). Gecko adhesion: Evolutionary nanotechnology. Philosophical Transactions of the Royal Society A, 366, 1575–1590.

    Article  Google Scholar 

  4. Shen, L. L., Hui, C. Y., & Jagota, A. (2008). A two-dimensional model for enhanced adhesion of film-terminated fibrillar interfaces by crack trapping. Journal of Applied Physics, 104, 123506.

    Article  Google Scholar 

  5. Autumn, K., & Peattie, A. M. (2002). Mechanisms of adhesion in geckos. Integrative and Comparative Biology, 42, 1081–1090.

    Article  Google Scholar 

  6. Su, Y. W., He, S. J., Hwang, K. C., & Ji, B. H. (2012). Why have not the hairs on the feet of gecko been smaller? Applied Physics Letters, 101, 173106.

    Article  Google Scholar 

  7. Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., Sponberg, S., Kenny, T. W., Israelachvili, J. N., & Full, R. J. (2002). Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 99, 12252–12256.

    Article  Google Scholar 

  8. Glassmaker, N. J., Jagota, A., Hui, C. Y., Noderer, W. L., & Chaudhury, M. K. (2007). Biologically inspired crack trapping for enhanced adhesion. Proceedings of the National Academy of Sciences of the United States of America, 104, 10786–10791.

    Article  Google Scholar 

  9. Arzt, E., Gorb, S., & Spolenak, R. (2003). From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences of the United States of America, 100, 10603–10606.

    Article  Google Scholar 

  10. Del Campo, A., Greiner, C., & Arzt, E. (2007). Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir, 23, 10235–10243.

    Article  Google Scholar 

  11. Bartlett, M. D., Croll, A. B., King, D. R., Paret, B. M., Irschick, D. J., & Crosby, A. J. (2012). Looking beyond fibrillar features to scale gecko-like adhesion. Advanced Materials, 24, 1078–1083.

    Article  Google Scholar 

  12. King, D. R., Bartlett, M. D., Gilman, C. A., Irschick, D. J., & Crosby, A. J. (2014). Creating gecko-like adhesives for “real world” surfaces. Advanced Materials, 26, 4345–4351.

    Article  Google Scholar 

  13. Gao, H. J., Wang, X., Yao, H. M., Gorb, S., & Arzt, E. (2005). Mechanics of hierarchical adhesion structures of geckos. Mechanics of Materials, 37, 275–285.

    Article  Google Scholar 

  14. Hanna, G., & Barnes, W. J. P. (1991). Adhesion and detachment of the toe pads of tree frogs. Journal of Experimental Biology, 155, 103–125.

    Article  Google Scholar 

  15. Barnes, W. J. P., Smith, J., Oines, C., & Mundl, R. (2002). Bionics and wet grip. Tire Technology International, 2002, 56–60.

    Google Scholar 

  16. Barnes, W. J., Baum, M., Peisker, H., & Gorb, S. N. (2013). Comparative Cryo-SEM and AFM studies of hylid and rhacophorid tree frog toe pads. Journal of Morphology, 274, 1384–1396.

    Article  Google Scholar 

  17. Drotlef, D. M., Appel, E., Peisker, H., Dening, K., Del Campo, A., Gorb, S. N., & Barnes, W. J. P. (2014). Morphological studies of the toe pads of the rock frog, Staurois parvus (family: Ranidae) and their relevance to the development of new biomimetically inspired reversible adhesives. Interface Focus, 5, 20140036.

    Article  Google Scholar 

  18. Federle, W., Barnes, W. J., Baumgartner, W., Drechsler, P., & Smith, J. M. (2006). Wet but not slippery: Boundary friction in tree frog adhesive toe pads. Journal of the Royal Society Interface, 3, 689–697.

    Article  Google Scholar 

  19. Li, M., Shi, L. P., & Wang, X. L. (2021). Physical mechanisms behind the wet adhesion: From amphibian toe-pad to biomimetics. Colloids Surface B: Biointerfaces, 199, 111531.

    Article  Google Scholar 

  20. Endlein, T., Barnes, W. J. P., Samuel, D. S., Crawford, N. A., Biaw, A. B., & Grafe, U. (2013). Sticking under wet conditions: the remarkable attachment abilities of the torrent frog, Staurois guttatus. PLoS ONE, 8, e73810.

    Article  Google Scholar 

  21. Iturri, J., Xue, L. J., Kappl, M., García-Fernández, L., Barnes, W. J. P., Butt, H. J., & Del Campo, A. (2015). Torrent frog-inspired adhesives: attachment to flooded surfaces. Advanced Functional Materials, 25, 1499–1505.

    Article  Google Scholar 

  22. Huang, W., & Wang, X. L. (2013). Biomimetic design of elastomer surface pattern for friction control under wet conditions. Bioinspiration & Biomimetics, 8, 046001.

    Article  Google Scholar 

  23. Wang, S., Li, M., Huang, W., & Wang, X. L. (2016). Sticking/climbing ability and morphology studies of the toe pads of Chinese fire belly newt. Journal of Bionic Engineering, 13, 115–123.

    Article  Google Scholar 

  24. Li, M., Huang, W., & Wang, X. L. (2015). Bioinspired, peg-studded hexagonal patterns for wetting and friction. Biointerphases, 10, 031008.

    Article  Google Scholar 

  25. Drotlef, D. M., Stepien, L., Kappl, M., Barnes, W. J. P., Butt, H. J., & Del Campo, A. (2013). Insights into the adhesive mechanisms of tree frogs using artificial mimics. Advanced Functional Materials, 23, 1137–1146.

    Article  Google Scholar 

  26. Chen, H. W., Zhang, L. W., Zhang, D. Y., Zhang, P. F., & Han, Z. W. (2015). Bioinspired surface for surgical graspers based on the strong wet friction of tree frog toe pads. ACS Applied Materials & Interfaces, 7, 13987–13995.

    Article  Google Scholar 

  27. Li, M., Dai, Q. W., Jiao, Q., Huang, W., & Wang, X. L. (2019). Magnetically stimulating capillary effect for reversible wet adhesions. Soft Matter, 15, 2817–2825.

    Article  Google Scholar 

  28. Li, M., Xie, J., Dai, Q. W., Huang, W., & Wang, X. L. (2018). Effect of wetting case and softness on adhesion of bioinspired micropatterned surfaces. Journal of the Mechanical Behavior of Biomedical Materials, 78, 266–272.

    Article  Google Scholar 

  29. Zhang, L. W., Chen, H. W., Guo, Y. R., Wang, Y., Jiang, Y. G., Zhang, D. Y., Ma, L. R., Luo, J. B., & Jiang, L. (2020). Micro-nano hierarchical structure enhanced strong wet friction surface inspired by tree frogs. Advanced Science, 7, 2001125.

    Article  Google Scholar 

  30. Souza, E. J. D., Brinkmann, M., Mohrdieck, C., & Arzt, E. (2008). Enhancement of capillary forces by multiple liquid bridges. Langmuir, 24, 8813–8820.

    Article  Google Scholar 

  31. Emerson, S. B., & Diehl, D. (1980). Toe pad morphology and mechanisms of sticking in frogs. Biological Journal of the Linnean Society, 13, 199–216.

    Article  Google Scholar 

  32. Li, M., Xie, J., Shi, L. P., Huang, W., & Wang, X. L. (2018). Controlling direct contact force for wet adhesion with different wedged film stabilities. Journal of Physics D: Applied Physics, 51, 165305.

    Article  Google Scholar 

  33. Li, X. S., Tao, D. S., Lu, H. Y., Bai, P. P., Liu, Z. Y., Ma, L. R., Meng, Y. G., & Tian, Y. (2019). Recent developments in gecko-inspired dry adhesive surfaces from fabrication to application. Surface Topography: Metrology and Properties, 7, 023001.

    Google Scholar 

  34. Persson, B. N. J. (2007). Wet adhesion with application to tree frog adhesive toe pads and tires. Journal of Physics: Condensed Matter, 19, 376110.

    Google Scholar 

  35. De Gennes, P. G., Brochard-Wyart, F., & Quéré, D. (2004). Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (pp. 33–67). New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 51675268), Natural Science Foundation of Anhui Province of China (Nos. 2108085ME174, 2108085QE228), Natural Science Research Fund of Higher Education of Anhui Province (No. KJ2020A0230), the Open Project of the Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (No. GFST2021KF05), and the Open Project of the Anhui Province Key Laboratory of Special and Heavy Load Robots (No. TZJQR004-2021).

Funding

National Natural Science Foundation of China, 51675268, Xiaolei Wang, Natural Science Research Fund of Higher Education of Anhui Province, KJ2020A0230, Meng Li, open project of key laboratory of green fabrication and surface technology of advanced metal materials, GFST2021KF05, Meng Li, open project of Anhui Province Key Laboratory of special and heavy load robot, TZJQR004-2021, Meng Li, Natural Science Foundation of Anhui Province of China, 2108085QE228, Meng Li, 2108085ME174, Liping Shi

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Shi or Xiaolei Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3812 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Jiao, Q., Shi, L. et al. Comparative Studies on Wet Attaching Abilities of Different Salamander Species. J Bionic Eng 19, 92–102 (2022). https://doi.org/10.1007/s42235-021-00128-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00128-2

Keywords

Navigation