Skip to main content

Advertisement

Log in

Functional cellulose paper with high transparency, high haze, and UV-blocking for perovskite solar cells

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Perovskite solar cells (PSCs) have become a promising solar energy utilization technology due to their high energy conversion efficiency and low preparation cost. However, the inherent instability under UV illumination limits their practical applications. In this work, we developed a new approach to fabricate functional cellulose paper (FTH paper) with high transparency, high haze, and UV-blocking, which can be used to extend the lifespan of PSCs. When the impregnation amounts of carboxymethyl cellulose and tannic acid were 16 wt% and 0.7 wt%, the light transmittance and UV-blocking performance reached 86.8% (at 600 nm) and 83.1% (at 320 nm), respectively, while maintaining a haze of 71.5%. After protonation and desalination treatment, the FTH paper exhibited good water resistance and mechanical properties (71.49 MPa, 2156 folding cycles). More importantly, FTH paper coating can significantly improve optical path length and the UV-stability (improved by 26% after 100 h) of PSCs. This study not only provides a simple and effective strategy to improve the properties of PSCs but also opens the way for high-value utilization of paper materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33:2101368. https://doi.org/10.1002/adma.202101368

    Article  ADS  PubMed  Google Scholar 

  2. Thompson H (2022) The geopolitics of fossil fuels and renewables reshape the world. Nature. https://doi.org/10.1038/d41586-022-00713-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhou H, Mao Y, Zheng Y, Liu T, Yang Y, Si C et al (2023) Complete conversion of xylose-extracted corncob residues to bioplastic in a green and low carbon footprint way. Chem Eng J 144572. https://doi.org/10.1016/j.cej.2023.144572

  4. Zheng Y, Liu H, Yan L, Yang H, Dai L, Si C (2023) Lignin-based encapsulation of liquid metal particles for flexible and high-efficiently recyclable electronics. Adv Func Mater n/a(n/a):2310653. https://doi.org/10.1002/adfm.202310653

  5. Yang Y, Zhou H, Chen X, Liu T, Zheng Y, Dai L, Si C (2023) Green and ultrastrong polyphenol lignin-based vitrimer adhesive with photothermal conversion property, wide temperature adaptability, and solvent resistance. Chem Eng J 147216. https://doi.org/10.1016/j.cej.2023.147216

  6. Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H, Dai L, Zhang X, Si C, Du H, Zhang K (2022) Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Mater 48:244–262. https://doi.org/10.1016/j.ensm.2022.03.013

    Article  Google Scholar 

  7. Tang H, He S, Peng C (2017) A short progress report on high-efficiency perovskite solar cells. Nanoscale Res Lett 12(1):410. https://doi.org/10.1186/s11671-017-2187-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang K, Zheng L, Hou Y, Nozariasbmarz A, Poudel B, Yoon J et al (2022) Overcoming Shockley-Queisser limit using halide perovskite platform? Joule 6(4):756–771. https://doi.org/10.1016/j.joule.2022.01.009

    Article  CAS  Google Scholar 

  9. Ma S, Yuan G, Zhang Y, Yang N, Li Y, Chen Q (2022) Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy Environ Sci 15(1):13–55. https://doi.org/10.1039/D1EE02882K

    Article  CAS  Google Scholar 

  10. Chen R, Zhang W, Guan X, Raza H, Zhang S, Zhang Y et al (2022) Rear electrode materials for perovskite solar cells. Adv Func Mater 32(26):2200651. https://doi.org/10.1002/adfm.202200651

    Article  CAS  Google Scholar 

  11. Lee S-W, Kim S, Bae S, Cho K, Chung T, Hwang J-K et al (2018) Enhanced UV stability of perovskite solar cells with a SrO interlayer. Org Electron 63:343–348. https://doi.org/10.1016/j.orgel.2018.09.019

    Article  CAS  Google Scholar 

  12. Xu H, Miao Y, Wei N, Chen H, Qin Z, Liu X et al (2022) CsI enhanced buried interface for efficient and UV-robust perovskite solar cells. Adv Energy Mater 12(2):2103151. https://doi.org/10.1002/aenm.202103151

    Article  CAS  Google Scholar 

  13. Chen C, Li H, Jin J, Chen X, Cheng Y, Zheng Y et al (2017) Long-lasting nanophosphors applied to UV-resistant and energy storage perovskite solar cells. Adv Energy Mater 7(20):1700758. https://doi.org/10.1002/aenm.201700758

    Article  CAS  Google Scholar 

  14. Han K-S, Lee H, Kim D, Lee H (2009) Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method. Sol Energy Mater Sol Cells 93(8):1214–1217. https://doi.org/10.1016/j.solmat.2009.01.002

    Article  CAS  Google Scholar 

  15. Li C-P, Yang C-S, Chen P-C, Hsu F-C (2022) Stability improvement of inverted organic solar cells with thin organic protective layer. Org Electron 108:106602. https://doi.org/10.1016/j.orgel.2022.106602

    Article  CAS  Google Scholar 

  16. Zhou H, Guan Y, Yan X, Pan Z, Xu J, Dai L et al (2023) All-lignocellulose-based hard bioplastic. Ind Crops Prod 193:116164. https://doi.org/10.1016/j.indcrop.2022.116164

    Article  CAS  Google Scholar 

  17. Duan Y, Yang H, Liu K, Xu T, Chen J, Xie H et al (2023) Cellulose nanofibril aerogels reinforcing polymethyl methacrylate with high optical transparency. Advanced Compos Hybrid Mater 6(3):123. https://doi.org/10.1007/s42114-023-00700-w

    Article  CAS  Google Scholar 

  18. Cao QW, Wu Q, Dai L, Shen XJ, Si CL (2021) A well-defined lignin-based filler for tuning the mechanical properties of polymethyl methacrylate. Green Chem 23(6):2329–2335. https://doi.org/10.1039/d1gc00249j

    Article  CAS  Google Scholar 

  19. Dai L, Lu J, Kong F, Liu K, Wei H, Si C (2019) Reversible photo-controlled release of bovine serum albumin by azobenzene-containing cellulose nanofibrils-based hydrogel. Adv Compos Hybrid Mater 2(3):462–470. https://doi.org/10.1007/s42114-019-00112-9

    Article  CAS  Google Scholar 

  20. Liu R, Dai L, Si C, Zeng Z (2018) Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohyd Polym 195:63–70. https://doi.org/10.1016/j.carbpol.2018.04.085

    Article  CAS  Google Scholar 

  21. Zheng Y, Liu T, He H, Lv Z, Xu J, Ding D et al (2023) Lignin-based epoxy composite vitrimers with light-controlled remoldability. Adv Compos Hybrid Mater 6(1):53. https://doi.org/10.1007/s42114-023-00633-4

    Article  CAS  Google Scholar 

  22. Liu W, Lin Q, Chen S, Yang H, Liu K, Pang B et al (2023) Microencapsulated phase change material through cellulose nanofibrils stabilized Pickering emulsion templating. Adv Compos Hybrid Mater 6(4):149. https://doi.org/10.1007/s42114-023-00725-1

    Article  CAS  Google Scholar 

  23. Wang Y, Xu T, Liu K, Zhang M, Cai X-M, Si C (2023) Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives. Aggregate e428. https://doi.org/10.1002/agt2.428

  24. Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C (2023) Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr Polym 313:120851. https://doi.org/10.1016/j.carbpol.2023.120851

    Article  CAS  PubMed  Google Scholar 

  25. Toivonen MS, Onelli OD, Jacucci G, Lovikka V, Rojas OJ, Ikkala O, Vignolini S (2018) Anomalous-diffusion-assisted brightness in white cellulose nanofibril membranes. Adv Mater 30(16):1704050. https://doi.org/10.1002/adma.201704050

    Article  CAS  Google Scholar 

  26. Frka-Petesic B, Vignolini S (2019) So much more than paper. Nat Photonics 13(6):365–367. https://doi.org/10.1038/s41566-019-0448-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dai L, Liu R, Hu L, Si C (2017) Simple and green fabrication of AgCl/Ag-cellulose paper with antibacterial and photocatalytic activity. Carbohydr Polym 174:450–455. https://doi.org/10.1016/j.carbpol.2017.06.107

    Article  CAS  PubMed  Google Scholar 

  28. Liu H, Xu T, Cai C, Liu K, Liu W, Zhang M, Du H, Si C, Zhang K (2022) Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Funct Mater 32:2113082. https://doi.org/10.1002/adfm.202113082

    Article  CAS  Google Scholar 

  29. Xu T, Song Q, Liu K, Liu H, Pan J, Liu W, Dai L, Zhang M, Wang Y, Si C, Du H, Zhang K (2023) Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett 15:98. https://doi.org/10.1007/s40820-023-01073-x

    Article  ADS  CAS  Google Scholar 

  30. Liang Q, Liu K, Xu T, Wang Y, Zhang M, Zhao Q, Zhong W, Cai X-M, Zhao Z, Si C (2023) Interfacial modulation of Ti3C2Tx MXene by cellulose nanofibrils to construct hybrid fibers with high volumetric specific capacitance. Small 2307344. https://doi.org/10.1002/smll.202307344

  31. Zhao W, Guo P, Liu C, Jia N, Fang Z, Ye L et al (2023) Laser derived electron transport layers with embedded p–n heterointerfaces enabling planar perovskite solar cells with efficiency over 25%. Adv Mater 35(31):2300403. https://doi.org/10.1002/adma.202300403

    Article  CAS  Google Scholar 

  32. Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K (2022) Cellulose nanopaper: Fabrication, functionalization, and applications. Nano-Micro Lett 14:104. https://doi.org/10.1007/s40820-022-00849-x

    Article  CAS  Google Scholar 

  33. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393. https://doi.org/10.1002/anie.200460587

    Article  CAS  Google Scholar 

  34. Cheng Y, Tian W, Mi Q, Zheng X, Zhang J (2020) Highly transparent all-polysaccharide composite films with tailored transmission haze for light manipulation. Adv Mater Technol 5(9):2000378. https://doi.org/10.1002/admt.202000378

    Article  CAS  Google Scholar 

  35. Sheng W, He J, Yang J, Cai Q, Xiao S, Zhong Y et al (2023) Multifunctional metal-organic frameworks capsules modulate reactivity of lead iodide toward efficient perovskite solar cells with UV resistance. Adv Mater n/a(n/a):2301852. https://doi.org/10.1002/adma.202301852

  36. Ge W, Cao S, Shen F, Wang Y, Ren J, Wang X (2019) Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels. Carbohyd Polym 224:115147. https://doi.org/10.1016/j.carbpol.2019.115147

    Article  CAS  Google Scholar 

  37. Beckingham BS, Lynd NA, Miller DJ (2018) Monitoring multicomponent transport using in situ ATR FTIR spectroscopy. J Membr Sci 550:348–356. https://doi.org/10.1016/j.memsci.2017.12.072

    Article  CAS  Google Scholar 

  38. Wang M, Jia X, Liu W, Lin X (2021) Water insoluble and flexible transparent film based on carboxymethyl cellulose. Carbohyd Polym 255:117353. https://doi.org/10.1016/j.carbpol.2020.117353

    Article  CAS  Google Scholar 

  39. Hu T, Liu Q, Gao T, Dong K, Wei G, Yao J (2018) Facile preparation of tannic acid–poly(vinyl alcohol)/sodium alginate hydrogel beads for methylene blue removal from simulated solution. ACS Omega 3(7):7523–7531. https://doi.org/10.1021/acsomega.8b00577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang Y, Lin Q, Yu Y, Yu W (2020) Functionalization of wood fibers based on immobilization of tannic acid and in situ complexation of Fe (II) ions. Appl Surf Sci 510:145436. https://doi.org/10.1016/j.apsusc.2020.145436

    Article  CAS  Google Scholar 

  41. Shin M, Kim K, Shim W, Yang JW, Lee H (2016) Tannic acid as a degradable mucoadhesive compound. ACS Biomater Sci Eng 2(4):687–696. https://doi.org/10.1021/acsbiomaterials.6b00051

    Article  CAS  PubMed  Google Scholar 

  42. Shan S, Ji W, Zhang S, Huang Y, Yu Y, Yu W (2022) Insights into the immobilization mechanism of tannic acid on bamboo cellulose fibers. Ind Crops Prod 182:114836. https://doi.org/10.1016/j.indcrop.2022.114836

    Article  CAS  Google Scholar 

  43. Sun H, Fang X, Zhu Y, Yu Z, Lu X, Sun J (2023) Highly tough, degradable, and water-resistant bio-based supramolecular plastics comprised of cellulose and tannic acid. J Mater Chem A 11(13):7193–7200. https://doi.org/10.1039/D3TA00351E

    Article  CAS  Google Scholar 

  44. Jacucci G, Schertel L, Zhang Y, Yang H, Vignolini S (2021) Light management with natural materials: from whiteness to transparency. Adv Mater 33(28):2001215. https://doi.org/10.1002/adma.202001215

    Article  CAS  Google Scholar 

  45. Kaschuk JJ, Al Haj Y, Rojas OJ, Miettunen K, Abitbol T, Vapaavuori J (2022) Plant-based structures as an opportunity to engineer optical functions in next-generation light management. Adv Mater 34(6):2104473. https://doi.org/10.1002/adma.202104473

    Article  CAS  Google Scholar 

  46. Ha D, Fang Z, Zhitenev NB (2018) Paper in electronic and optoelectronic devices. Adv Electron Mater 4(5):1700593. https://doi.org/10.1002/aelm.201700593

    Article  CAS  Google Scholar 

  47. Hu W, Chen G, Liu Y, Liu Y, Li B, Fang Z (2018) Transparent and hazy all-cellulose composite films with superior mechanical properties. ACS Sustain Chem Eng 6(5):6974–6980. https://doi.org/10.1021/acssuschemeng.8b00814

    Article  CAS  Google Scholar 

  48. Monier M, Abdel-Latif DA, Ji HF (2016) Synthesis and application of photo-active carboxymethyl cellulose derivatives. React Funct Polym 102:137–146. https://doi.org/10.1016/j.reactfunctpolym.2016.03.013

    Article  CAS  Google Scholar 

  49. Aksakal B, Denktaş C, Bozdoğan A (2022) Influence of ultraviolet radiation on structural and uniaxial tensile characteristics of tannic acid/poly (vinyl alcohol) composite films. J Appl Polym Sci 139(24):52350. https://doi.org/10.1002/app.52350

    Article  CAS  Google Scholar 

  50. Xi Y, Zhang L, Tian Y, Song J, Ma J, Wang Z (2022) Rapid dissolution of cellulose in an AlCl3/ZnCl2 aqueous system at room temperature and its versatile adaptability in functional materials. Green Chem 24(2):885–897. https://doi.org/10.1039/D1GC03918K

    Article  CAS  Google Scholar 

  51. Hou G, Liu Y, Zhang D, Li G, Xie H, Fang Z (2020) Approaching theoretical haze of highly transparent all-cellulose composite films. ACS Appl Mater Interfaces 12(28):31998–32005. https://doi.org/10.1021/acsami.0c08586

    Article  CAS  PubMed  Google Scholar 

  52. Fang D, Yu H, Dirican M, Tian Y, Xie J, Jia D et al (2021) Disintegrable, transparent and mechanically robust high-performance antimony tin oxide/nanocellulose/polyvinyl alcohol thermal insulation films. Carbohyd Polym 266:118175. https://doi.org/10.1016/j.carbpol.2021.118175

    Article  CAS  Google Scholar 

  53. Zhu M, Wang Y, Zhu S, Xu L, Jia C, Dai J et al (2017) Anisotropic, transparent films with aligned cellulose nanofibers. Adv Mater 29(21):1606284. https://doi.org/10.1002/adma.201606284

    Article  CAS  Google Scholar 

  54. Gao L, Chao L, Hou M, Liang J, Chen Y, Yu H-D, Huang W (2019) Flexible, transparent nanocellulose paper-based perovskite solar cells. npj Flex Electron 3(1):4. https://doi.org/10.1038/s41528-019-0048-2

  55. Liu W, Liu Y, Yang Z, Xu C, Li X, Huang S et al (2023) Flexible solar cells based on foldable silicon wafers with blunted edges. Nature 617(7962):717–23. https://doi.org/10.1038/s41586-023-05921-z

Download references

Funding

National Natural Science Foundation of China, 32171717, Natural Science Foundation of Tianjin Municipality, 22JCYBJC01560, China Postdoctoral Science Foundation, 2023M740562.

Author information

Authors and Affiliations

Authors

Contributions

LD supervised the project. YG and LD designed the experiments. YG performed the experiments, data analysis, and wrote the original draft. All authors discussed experiments and results. CS and ZH co-supervised the work, and LD reviewed and edited, guiding the manuscript. All authors have given approval for the final version of the manuscript.

Corresponding authors

Correspondence to Lin Dai, Zhanhua Huang or Chuanling Si.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1287 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Y., He, H., Tang, D. et al. Functional cellulose paper with high transparency, high haze, and UV-blocking for perovskite solar cells. Adv Compos Hybrid Mater 7, 12 (2024). https://doi.org/10.1007/s42114-023-00823-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00823-0

Keywords

Navigation