Skip to main content
Log in

Scalable and sustainable hierarchical-morphology coatings for passive daytime radiative cooling

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Passive daytime radiative-cooling materials (characterized by a high solar reflectance and thermal emittance) exhibit a cooling effect under direct sunlight with zero energy consumption, thereby decreasing the demand for air conditioning. Although various well-designed radiative-cooling materials have been reported to date, their syntheses are environmentally harmful and unsuitable for large-scale operation (as they involve complicated, high-cost, or solution-processed methods). In this study, a hierarchical-morphology coating for large-scale radiative-cooling applications was constructed by a one-step, inexpensive, solution-free, and environmentally friendly strategy. The hierarchical morphology (comprising nanospheres and micropores randomly dispersed throughout a polymer matrix) was fabricated through simple mechanical stirring (without the use of templates); no solvents or by-products were produced during the manufacturing process. The optimal coating showed high emissivity (95.1%) in the atmospheric-window band, strong solar reflectivity (94.0%), and a cooling power of 62.94 W m−2 (according to field tests). Moreover, covering the roof of a model with the as-prepared hierarchical-morphology coating reduced the average roof temperature by 11.5 ℃ (according to outdoor tests). According to simulations, the coating enabled annual cooling-energy-consumption savings in the range of 14.5–41.2% for typical buildings located in different climatic regions, indicating high potential as an energy-saving building-envelope material.

Graphical Abstract

A one-step, scalable and sustainable strategy has been developed to fabricate hierarchical-morphology coatings for passive daytime radiative cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in this article and Supplementary Information.

References

  1. Wong TS, Kang SH, Tang SK, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Mu Q, Liu R, Kimura H, Li J, Jiang H, Zhang X, Yu Z, Sun X, Algadi H, Guo Z, Du W, Hou C (2022) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion Battery anodes. Adv Compos Hybrid Mater 6

  3. Ma Y, Hou C, Kimura H, Xie X, Jiang H, Sun X, Yang X, Zhang Y, Du W (2023) Recent advances in the application of carbon-based electrode materials for high-performance zinc ion capacitors: a mini review. Adv Compos Hybrid Mater 6

  4. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924

  5. Dang C, Mu Q, Xie X, Sun X, Yang X, Zhang Y, Maganti S, Huang M, Jiang Q, Seok I, Du W, Hou C (2022) Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv Compos Hybrid Mater 5:606–626

    Article  Google Scholar 

  6. Yang W, Peng D, Kimura H, Zhang X, Sun X, Pashameah RA, Alzahrani E, Wang B, Guo Z, Du W, Hou C (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5:3146–3157

    Article  CAS  Google Scholar 

  7. Cho J-W, Park S-J, Park S-J, Kim Y-B, Kim K-Y, Bae D, Kim S-K (2020) Scalable On-Chip Radiative Coolers for Concentrated Solar Energy Devices. ACS Photonics 7:2748–2755

    Article  CAS  Google Scholar 

  8. Heo SY, Kim DH, Song YM, Lee GJ (2021) Determining the effectiveness of Radiative Cooler-Integrated Solar cells. Adv Energy Mater 12

  9. Poojeera S, Srichat A, Watcharanat P, Naphon P (2023) Numerical and Experimental Study on PPE Suit cooling in the COVID-19 pandemic with Thermoelectric Module. Eng Sci

  10. Riccio A, Sellitto A, Borrelli D, Sansone R, Caraviello A, Riccio U, Torluccio A, Pacini L, Mohr R (2023) On the development of a Passive shape memory alloy- based cooling system – part I: design and implementation. Eng Sci

  11. Riccio A, Sellitto A, Caraviello A, Riccio U, Torluccio A, Pacini L, Mohr R (2023) On the development of a Passive shape memory alloy- based cooling system – part II: design justification. Eng Sci

  12. Cui Y, Ke Y, Liu C, Chen Z, Wang N, Zhang L, Zhou Y, Wang S, Gao Y, Long Y (2018) Thermochromic VO2 for energy-efficient Smart Windows. Joule 2:1707–1746

    Article  CAS  Google Scholar 

  13. Wang S, Zhou Y, Jiang T, Yang R, Tan G, Long Y (2021) Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 89

  14. Cazorla C (2019) Refrigeration based on plastic crystals. Nat Publishing Group

  15. Wang S, Jiang T, Meng Y, Yang R, Tan G, Long Y (2021) Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374:1501–1504

  16. Zinzi M, Agnoli S (2012) Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy Build 55:66–76

    Article  Google Scholar 

  17. Yi Z, lv Y, Xu D, Xu J, Qian H, Zhao D, Yang R (2021) Energy saving analysis of a transparent radiative cooling film for buildings with roof glazing. Energy and Built Environment 2:214–222

    Article  Google Scholar 

  18. Jo JH, Carlson JD, Golden JS, Bryan H (2010) An integrated empirical and modeling methodology for analyzing solar reflective roof technologies on commercial buildings. Build Environ 45:453–460

    Article  Google Scholar 

  19. Akeiber H, Nejat P, Majid MZA, Wahid MA, Jomehzadeh F, Zeynali Famileh I, Calautit JK, Hughes BR, Zaki SA (2016) A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew Sustain Energy Rev 60:1470–1497

    Article  Google Scholar 

  20. Suhendri M, Hu Y, Su J, Darkwa S, Riffat (2020) Implementation of Passive Radiative Cooling Technology in Buildings: A Review. Buildings 10

  21. Zhang J, Cheng Y, Xu C, Gao M, Zhu M, Jiang L (2021) Hierarchical Interface Engineering for Advanced Nanocellulosic Hybrid aerogels with High Compressibility and Multifunctionality. Adv Funct Mater 31

  22. Cai X, Wang Y, Luo Y, Xu J, Zhao L, Lin Y, Ning Y, Wang J, Gao L, Li D (2022) Rationally tuning phase separation in polymeric membranes toward optimized all-day Passive Radiative coolers. ACS Appl Mater Interfaces

  23. Feng C, Yang P, Liu H, Mao M, Liu Y, Xue T, Fu J, Cheng T, Hu X, Fan HJ, Liu K (2021) Bilayer porous polymer for efficient passive building cooling. Nano Energy 85

  24. Chen Y, Dang B, Fu J, Wang C, Li C, Sun Q, Li H (2021) Cellulose-based hybrid structural material for Radiative cooling. Nano Lett 21:397–404

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Jaramillo-Fernandez J, Yang H, Schertel L, Whitworth GL, Garcia PD, Vignolini S (2022) C. M. Sotomayor-Torres, highly-scattering cellulose-based films for Radiative cooling. Adv Sci (Weinh) 9 e2104758

  26. Tian Y, Shao H, Liu X, Chen F, Li Y, Tang C, Zheng Y (2021) Superhydrophobic and recyclable cellulose-Fiber-based composites for High-Efficiency Passive Radiative cooling. ACS Appl Mater Interfaces 13:22521–22530

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Liang Y, Li W, Xu N, Zhu B, Wu Z, Wang X, Fan S, Wang M, Zhu J (2022) Protecting ice from melting under sunlight via radiative cooling. Sci Adv 8:eabj9756

  28. Xue X, Qiu M, Li Y, Zhang QM, Li S, Yang Z, Feng C, Zhang W, Dai JG, Lei D, Jin W, Xu L, Zhang T, Qin J, Wang H, Fan S (2020) Creating an eco-friendly building coating with Smart Subambient Radiative cooling. Adv Mater 32:e1906751

  29. Song J, Zhang W, Sun Z, Pan M, Tian F, Li X, Ye M, Deng X (2022) Durable radiative cooling against environmental aging. Nat Commun 13:4805

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Chen Y, Mandal J, Li W, Smith-Washington A, Tsai C-C, Huang W, Shrestha S, Yu N, Han RP, Cao A (2020) Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci Adv 6:eaaz5413

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Xiang B, Zhang R, Luo Y, Zhang S, Xu L, Min H, Tang S, Meng X (2021) 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81

  32. Zhai Y, Ma Y, David SN, Zhao D, Lou R, Tan G, Yang R, Yin X (2017) Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355:1062–1066

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Li X, Peoples J, Yao P, Ruan X (2021) Ultrawhite BaSO4 paints and films for Remarkable Daytime Subambient Radiative cooling. ACS Appl Mater Interfaces 13:21733–21739

    Article  CAS  PubMed  Google Scholar 

  34. Cheng Z, Han H, Wang F, Yan Y, Shi X, Liang H, Zhang X, Shuai Y (2021) Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy 89

  35. Wang T, Zhang Y, Chen M, Gu M, Wu L (2022) Scalable and waterborne titanium-dioxide-free thermochromic coatings for self-adaptive passive radiative cooling and heating. Cell Rep Phys Sci 3

  36. Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M (2021) Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373:692–696

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Lin K, Du Y, Chen S, Chao L, Him Lee H, Chung Ho T, Zhu Y, Zeng Y, Pan A, Yan C, Tso (2022) Nanoparticle-polymer hybrid dual-layer coating with broadband solar reflection for high-performance daytime passive radiative cooling. Energy Build 276

  38. Wang H-D, Xue C-H, Guo X-J, Liu B-Y, Ji Z-Y, Huang M-C, Jia S-T (2021) Superhydrophobic porous film for daytime radiative cooling. Appl Mater Today 24

  39. Yu S, Zhang Q, Wang Y, Lv Y, Ma R (2022) Photonic-structure Colored Radiative coolers for Daytime Subambient cooling. Nano Lett 22:4925–4932

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Mandal J, Fu Y, Overvig AC, Jia M, Sun K, Shi NN, Zhou H, Xiao X, Yu N, Yang Y (2018) Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362:315–319

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Rephaeli E, Raman A, Fan S (2013) Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett 13:1457–1461

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Kim HH, Im E, Lee S (2020) Colloidal Photonic assemblies for Colorful Radiative cooling. Langmuir 36:6589–6596

    Article  CAS  PubMed  Google Scholar 

  43. Zhou L, Song H, Liang J, Singer M, Zhou M, Stegenburgs E, Zhang N, Xu C, Ng T, Yu Z, Ooi B, Gan Q (2019) A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat Sustain 2:718–724

    Article  Google Scholar 

  44. Choi M, Seo J, Yoon S, Nam Y, Lee J, Lee BJ (2022) All-day radiative cooling using a grating-patterned PDMS film emitter. Appl Therm Eng 214

  45. Lin K, Chao L, Ho TC, Lin C, Chen S, Du Y, Huang B, Tso CY (2021) A flexible and scalable solution for daytime passive radiative cooling using polymer sheets. Energy Build 252

  46. Zhou L, Rada J, Zhang H, Song H, Mirniaharikandi S, Ooi BS, Gan Q (2021) Sustainable and inexpensive polydimethylsiloxane sponges for Daytime Radiative cooling. Adv Sci (Weinh) 8:e2102502

  47. Dong S, Wu Q, Zhang W, Xia G, Yang L, Cui J (2022) Slippery Passive Radiative cooling Supramolecular Siloxane Coatings. ACS Appl Mater Interfaces 14:4571–4578

    Article  CAS  PubMed  Google Scholar 

  48. Huang M-C, Xue C-H, Huang J, Liu B-Y, Guo X-J, Bai Z-X, Wei R-X, Wang H-D, Du M-M, Jia S-T, Chen Z, Lai Y (2022) A hierarchically structured self-cleaning energy-free polymer film for daytime radiative cooling. Chem Eng J 442

  49. Lee GJ, Kim YJ, Kim HM, Yoo YJ, Song YM (2018) Colored, Daytime Radiative coolers with Thin-Film resonators for aesthetic purposes. Adv Opt Mater 6

  50. Luo X, Wu H-C, Betz J, Rubloff GW, Bentley WE (2014) Air bubble-initiated biofabrication of freestanding, semi-permeable biopolymer membranes in PDMS microfluidics. Biochem Eng J 89:2–9

  51. Xu L, Lee H, Jetta D, Oh KW (2015) Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS). Lab Chip 15:3962–3979

    Article  CAS  PubMed  Google Scholar 

  52. Style RW, Sai T, Fanelli N, Ijavi M, Smith-Mannschott K, Xu Q, Wilen LA (2018) E. R. Dufresne, Liquid-Liquid phase separation in an Elastic Network. Phys Rev X 8

  53. Zimberlin JA, Sanabria-DeLong N, Tew GN, Crosby AJ (2007) Cavitation rheology for soft materials. Soft Matter 3:763–767

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Zhou Z, Wang X, Ma Y, Hu B, Zhou J (2020) Transparent polymer Coatings for energy-efficient daytime window cooling. Cell Rep Phys Sci 1

  55. Zhu Y, Luo H, Yang C, Qin B, Ghosh P, Kaur S, Shen W, Qiu M, Belov P, Li Q (2022) Color-preserving passive radiative cooling for an actively temperature-regulated enclosure. Light Sci Appl 11:122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang N, Lv Y, Zhao D, Zhao W, Xu J, Yang R (2022) Performance evaluation of radiative cooling for commercial-scale warehouse. Mater Today Energy 24

  57. Chen M, Pang D, Chen X, Yan H, Yang Y (2021) Passive daytime radiative cooling: Fundamentals, material designs, and applications. EcoMat4

  58. Tang K, Dong K, Li J, Gordon MP, Reichertz FG, Kim H, Rho Y, Wang Q, Lin C-Y, Grigoropoulos CP (2021) Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374:1504–1509

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Santamouris M, Synnefa A, Karlessi T (2011) Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol Energy 85:3085–3102

    Article  ADS  Google Scholar 

  60. Synnefa A, Santamouris M, Akbari H (2007) Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy Build 39:1167–1174

    Article  Google Scholar 

  61. Tian Z, Love JA (2008) A field study of occupant thermal comfort and thermal environments with radiant slab cooling. Build Environ 43:1658–1670

    Article  Google Scholar 

  62. Qiu Y, Li G, Zhou H, Zhang G, Guo L, Guo Z, Yang R, Fan Y, Wang W, Du Y, Dang F (2023) Highly stable Garnet Fe(2) Mo(3) O(12) Cathode boosts the Lithium-air Battery Performance featuring a Polyhedral Framework and Cationic Vacancy Concentrated Surface. Adv Sci (Weinh) 10:e2300482

  63. Zhang G, Zhang D, Yang R, Du Y, Wang N, Guo Z, Mai X, Dang F (2023) A multifunctional Wood-Derived Separator towards the problems of Semi‐Open System in Lithium‐Oxygen batteries. Adv Funct Mater

  64. Zhou H, Guo L, Zhang R, Xie L, Qiu Y, Zhang G, Guo Z, Kong B, Dang F (2023) Precise Engineering of Octahedron-Induced Subcrystalline CoMoO4 Cathode Catalyst for High‐Performance Li–Air batteries. Adv Funct Mater

Download references

Acknowledgements

The authors acknowledge the China-Portugal Joint Laboratory of Cultural Heritage Conservation Science, supported by the Belt and Road Initiative.

Funding

This work was financially supported by the Sichuan Provincial Youth Scientific and Technological Innovation Research Team on Ecological Adaptability of Plateau Architecture (Grant No. 2022JDTD0008) and the Southwest Minzu University Research Startup Funds (Grant No. 16011221040).

Author information

Authors and Affiliations

Authors

Contributions

Shuliang Li: conceptualization, methodology, writing-reviewing and editing; Guomin Du: performing the experiments; Min Pan: data collection and analysis; Xiaoliang Wang: programming, simulation development; Xinyi Dong: visualization/data presentation; Ting Huang: data curation; Dingyuan Hu: simulation validation; Tao Ren: data/evidence collection; Xue Li: conducting a research and investigation process; Hong Chen: provision of reagents, materials, and instrumentation; Xianmin Mai: supervision, project administration, management and coordination. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xianmin Mai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Du, G., Pan, M. et al. Scalable and sustainable hierarchical-morphology coatings for passive daytime radiative cooling. Adv Compos Hybrid Mater 7, 15 (2024). https://doi.org/10.1007/s42114-023-00819-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00819-w

Keywords

Navigation