Skip to main content
Log in

A capacitive polypyrrole-wrapped carbon cloth/bacterial cellulose antibacterial dressing with electrical stimulation for infected wound healing

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The formulation of an antibiotic-free antibacterial approach is imperative in circumventing escalating bacterial drug resistance. Electrical stimulation presents a viable therapeutic modality for such an approach. Nonetheless, obstacles persist in achieving efficacious sterilization with biosafe low-voltage electrical fields (EFs) and enduring antibacterial capabilities. In this study, we have devised a novel capacitive antibacterial dressing comprising polypyrrole-wrapped carbon cloth (PPy-CC) electrodes and a bacterial cellulose (BC) hydrogel separator. Subjected to 1 V electrical stimulation for 10 min, the dressing attains high bactericidal efficiency (up to 99.97%) and enhanced activity against multidrug-resistant (MDR) bacteria (up to 99.99%). Its considerable electric capacity and rechargeability allow for repeated charging to achieve sustained sterilization. In vivo results demonstrate significant inhibition of wound infection and facilitated wound recovery in infected full-thickness defects in mouse models. This represents an antibiotic-free, physically-stimulated treatment modality for infected wounds with considerable potential for clinical application.

TOC

A capacitive antibacterial dressing consists of polypyrrole-wrapped carbon cloth as electrode layer and bacterial cellulose hydrogel as separator with efficiently accelerated infected-wound healing. The resultant hydrogel dressing exhibits excellent high capacitance characteristics, good biocompatibility, efficient and sustained antibacterial ability after low voltage charging. It is an antibiotic-free, physical stimulation-based strategy for infected wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data and materials supporting the finding of this study are available within the paper and its supplementary information.

References

  1. Zhou L, Zheng H, Liu Z, Wang S, Liu Z, Chen F, Zhang H, Kong J, Zhou F, Zhang Q (2021) ACS Nano 15:2468. https://doi.org/10.1021/acsnano.0c06287

    Article  CAS  PubMed  Google Scholar 

  2. He J, Shi M, Liang Y, Guo B (2020) Chem Eng J 394. https://doi.org/10.1016/j.cej.2020.124888

  3. Liang Y, He J, Guo B (2021) ACS Nano 15:12687. https://doi.org/10.1021/acsnano.1c04206

    Article  CAS  PubMed  Google Scholar 

  4. Li Y, Fu R, Duan Z, Zhu C, Fan D (2022) Bioactive Materials 9:461. https://doi.org/10.1016/j.bioactmat.2021.07.023

    Article  CAS  PubMed  Google Scholar 

  5. Theuretzbacher U, Outterson K, Engel A, Karlén A (2020) Nat Rev Microbiol 18:275. https://doi.org/10.1038/s41579-019-0288-0

    Article  CAS  PubMed  Google Scholar 

  6. Hutchings MI, Truman AW, Wilkinson B (2019) Curr Opin Microbiol 51:72. https://doi.org/10.1016/j.mib.2019.10.008

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Y, Guo Q, Dai X, Wei X, Yu Y, Chen X, Li C, Cao Z, Zhang X (2019) Adv Mater 31:1806024. https://doi.org/10.1002/adma.201806024

    Article  CAS  Google Scholar 

  8. Chu J, Vila-Farres X, Inoyama D, Gallardo-Macias R, Jankowski M, Satish S, Freundlich JS, Brady SF (2018) Acs Infectious Diseases 4:33. https://doi.org/10.1021/acsinfecdis.7b00056

    Article  CAS  PubMed  Google Scholar 

  9. Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE (2016) Sci Rep 6. https://doi.org/10.1038/srep26717

  10. Shi R, Zhang J, Tian J, Zhao C, Li Z, Zhang Y, Li Y, Wu C, Tian W, Li Z (2020) Nano Energy 77:105201. https://doi.org/10.1016/j.nanoen.2020.105201

    Article  CAS  Google Scholar 

  11. Tao Y, Ju E, Ren J, Qu X (2015) Adv Mater 27:1097. https://doi.org/10.1002/adma.201405105

    Article  CAS  PubMed  Google Scholar 

  12. Tang S, Zheng J (2018) Adv Healthc Mater 7. https://doi.org/10.1002/adhm.201701503

  13. Principi N, Silvestri E, Esposito S (2019) Front Pharmacol 10. https://doi.org/10.3389/fphar.2019.00513

  14. Qi X, Huang Y, You S, Xiang Y, Cai E, Mao R, Pan W, Tong X, Dong W, Ye F, Shen J (2022) Adv Sci 9. https://doi.org/10.1002/advs.202106015

  15. Tian J, Feng H, Yan L, Yu M, Ouyang H, Li H, Jiang W, Jin Y, Zhu G, Li Z, Wang ZL (2017) Nano Energy 36:241. https://doi.org/10.1016/j.nanoen.2017.04.030

    Article  CAS  Google Scholar 

  16. Wang G, Feng H, Hu L, Jin W, Hao Q, Gao A, Peng X, Li W, Wong K-Y, Wang H, Li Z, Chu PK (2018) Nat Commun 9:2055. https://doi.org/10.1038/s41467-018-04317-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li C, Li Z, Zeng Y, Cao X, Zhao H, Yang YY, Yuan P, Lu X, Ding X (2022) Adv Healthcare Mater 11:2102044. https://doi.org/10.1002/adhm.202102044

    Article  CAS  Google Scholar 

  18. Duncan B, Li X, Landis RF, Kim ST, Gupta A, Wang L-S, Ramanathan R, Tang R, Boerth JA, Rotello VM (2015) ACS Nano 9:7775. https://doi.org/10.1021/acsnano.5b01696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balint R, Cassidy NJ, Cartmell SH (2014) Acta Biomater 10:2341. https://doi.org/10.1016/j.actbio.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  20. Thakur AV, Pathan HM, Lokh BJ, e. e. (2022) ES Energy Environ 18:75. https://doi.org/10.30919/esee8c751

  21. Liang Y, Wei Z, Zhang X, Wang R (2022) ES Energy Environ 18:101. https://doi.org/10.30919/esee8c783

  22. Wang J, Tavakoli J, Tang Y (2019) Carbohyd Polym 219:63. https://doi.org/10.1016/j.carbpol.2019.05.008

    Article  CAS  Google Scholar 

  23. Boni BOO, Lamboni L, Bakadia BM, Hussein SA, Yang G (2020) Eng Sci 10:68. https://doi.org/10.30919/es8d906

  24. Boni BOO, Lamboni L, Mao L, Bakadia BM, Shi Z, Yang G (2022) Eng Sci 19:175. https://doi.org/10.30919/es8d700

  25. Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H (2013) Carbohyd Polym 94:603. https://doi.org/10.1016/j.carbpol.2013.01.076

    Article  CAS  Google Scholar 

  26. Xie Y-Y, Hu X-H, Zhang Y-W, Wahid F, Chu L-Q, Jia S-R, Zhong C (2020) Carbohydr Polym 229. https://doi.org/10.1016/j.carbpol.2019.115456

  27. Nautiyal A, Qiao M, Cook JE, Zhang X, Huang T-S (2018) Appl Surf Sci 427:922. https://doi.org/10.1016/j.apsusc.2017.08.093

    Article  ADS  CAS  Google Scholar 

  28. Jasim A, Ullah MW, Shi Z, Lin X, Yang G (2017) Carbohyd Polym 163:62. https://doi.org/10.1016/j.carbpol.2017.01.056

    Article  CAS  Google Scholar 

  29. Zheng R-Z, Shi Z-J, Yang G (2020) Acta Polymerica Sinica 51:942. https://doi.org/10.11777/j.issn1000-3304.2020.20110

  30. Malinauskas A (2001) Polymer 42:3957. https://doi.org/10.1016/s0032-3861(00)00800-4

    Article  CAS  Google Scholar 

  31. Snook GA, Kao P, Best AS (2011) J Power Sources 196:1. https://doi.org/10.1016/j.jpowsour.2010.06.084

    Article  CAS  Google Scholar 

  32. Chen X, Yuan F, Zhang H, Huang Y, Yang J, Sun D (2016) J Mater Sci 51:5573. https://doi.org/10.1007/s10853-016-9899-2

    Article  ADS  CAS  Google Scholar 

  33. Bedre MD, Basavaraja S, Deshpande R, Balaji DS, Venkataraman A (2010) International Journal of Polymeric Materials and Polymeric. Biomaterials 59:531. https://doi.org/10.1080/00914031003760642

    Article  CAS  Google Scholar 

  34. Ge H, Qi G, Kang E-T, Neoh KG (1994) Polymer 35:504. https://doi.org/10.1016/0032-3861(94)90503-7

    Article  CAS  Google Scholar 

  35. Lu K-H, Sheen Y-J, Huang T-P, Kao S-H, Cheng C-L, Hwang C-A, Sheen S, Huang L, Sheen L-Y (2020) Food Microbiol 89:103374. https://doi.org/10.1016/j.fm.2019.103374

    Article  CAS  PubMed  Google Scholar 

  36. Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014) Carbohyd Polym 102:762. https://doi.org/10.1016/j.carbpol.2013.10.093

    Article  CAS  Google Scholar 

  37. Wu C, Shen L, Lu Y, Hu C, Liang Z, Long L, Ning N, Chen J, Guo Y, Yang Z, Hu X, Zhang J, Wang Y (2021) ACS Appl Mater Interfaces 13:52308. https://doi.org/10.1021/acsami.1c14088

  38. Lin T-Y, Weibel DB (2016) Appl Microbiol Biotechnol 100:4255. https://doi.org/10.1007/s00253-016-7468-x

  39. Ashrafi M, Baguneid M, Alonso-Rasgado T, Rautemaa-Richardson R, Bayat A (2017) Future Microbiol 12:337. https://doi.org/10.2217/fmb-2016-0204

  40. Lai S, Wang Y, Wan Y, Ma H, Fang L, Su J (2022) ACS Appl Mater Interfaces 14:20139. https://doi.org/10.1021/acsami.2c04359

  41. Bainbridge P (2013) J Wound Care 22:407. https://doi.org/10.12968/jowc.2013.22.8.407

  42. Talikowska M, Fu X, Lisak G (2019) Biosens Bioelectron 135:50. https://doi.org/10.1016/j.bios.2019.04.001

  43. Khaw JS, Xue R, Cassidy NJ, Cartmell SH (2022) Acta Biomaterialia 139:204. https://doi.org/10.1016/j.actbio.2021.08.010

  44. Mao L, Hu S, Gao Y, Wang L, Zhao W, Fu L, Cheng H, Xia L, Xie S, Ye W, Shi Z, Yang G (2020) Adv Healthc Mater 9

  45. Wang L, Mao L, Qi F, Li X, Ullah MW, Zhao M, Shi Z, Yang G (2021) Chem Eng J 424

  46. Luo R, Dai J, Zhang J, Li Z (2021) Adv Healthc Mater 10. https://doi.org/10.1002/adhm.202100557

  47. Versey Z, da Cruz Nizer WS, Russell E, Zigic S, DeZeeuw KG, Marek JE, Overhage J, Cassol E (2021) Front Immunol 12. https://doi.org/10.3389/fimmu.2021.648554

  48. Atamas SP (2002) Life Sci 72:631. https://doi.org/10.1016/s0024-3205(02)02299-3

  49. Abedin-Do A, Zhang Z, Douville Y, Methot M, Bernatchez J, Rouabhia M (2022) J Tissue Eng Regen Med 16:643. https://doi.org/10.1002/term.3305

  50. Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB (2019) Adv Drug Deliv Rev 146:97. https://doi.org/10.1016/j.addr.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  51. Li C, Zhang S, Yao Y, Wang Y, Xiao C, Yang B, Huang J, Li W, Ning C, Zhai J, Yu P, Wang Y (2023) Adv Healthc Mater. https://doi.org/10.1002/adhm.202300064

Download references

Acknowledgements

The author also was grateful for the Analytical and Testing Centre of Huazhong University of Science and Technology (HUST) and the test platform of Life Sciences College at HUST for characterization of samples.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No.51973076).

Author information

Authors and Affiliations

Authors

Contributions

Hao Wang, Zhijun Shi, Guang Yang conceived this research and designed experiments. Hao Wang, Ruizhu Zheng, Pengyu He and Xiaoming Li performed experiments, analysis, and interpretation of the data. All authors participated in the interpretation of the data. Hao Wang and Zhijun Shi wrote the paper and participated in the revision of it. All authors read, revised, and approved the final manuscript.

Corresponding authors

Correspondence to Zhijun Shi or Guang Yang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6681 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zheng, R., He, P. et al. A capacitive polypyrrole-wrapped carbon cloth/bacterial cellulose antibacterial dressing with electrical stimulation for infected wound healing. Adv Compos Hybrid Mater 7, 10 (2024). https://doi.org/10.1007/s42114-023-00814-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00814-1

Keywords

Navigation