Skip to main content
Log in

Core@shell-structured catalysts based on Mg-O-Cu bond for highly selective photoreduction of carbon dioxide to methane

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

It is still challenging for selectively and efficiently photocatalytic reduction of CO2 into desirable energy-rich carbon compounds. Herein, a robust noble metal free photocatalyst was reported for selective reduction of CO2 to CH4 using MgO-coated Cu2O composite based on Mg-O-Cu bond. The nanosphere MgO greatly enhanced the photo-corrosion resistance with good cycling stability. Meanwhile, Cu2O effectively undergoes the photoreduction of CO2 for CH4 production under visible-light irradiation with the selectivity of 86.8%, outperforming most reported noble metal photocatalysts under similar conditions. In addition, DFT calculations demonstrate the reaction mechanism of Cu2O@MgO photocatalytic reduction of CO2. High selectivity was realized over Cu2O@MgO in this work, which provides an innovative way to synthesize the cost-effective photocatalytic materials for CO2 reduction and utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wang K, Yu J, Yu Y, Qian YR, Zeng DZ, Guo S, Xiang Y, Wu JS (2018) A survey on energy internet: architecture, approach, and emerging technologies. Ieee Syst J 12:2403–2416. https://doi.org/10.1109/JSYST.2016.2639820

    Article  ADS  Google Scholar 

  2. Zhu J, Cannizzaro F, Liu L, Zhang H, Kosinov N, Filot IAW, Rabeah J, Brückner A, Hensen EJM (2021) Ni-In synergy in CO2 hydrogenation to methanol. ACS Catal 11:11371–11384. https://doi.org/10.1021/acscatal.1c03170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rogelj J, den Elzen M, Hohne N, Fransen T, Fekete H, Winkler H, Chaeffer RS, Ha F, Riahi K, Meinshausen M (2016) Paris agreement climate proposals need a boost to keep warming well below 2 degrees C. Nature 534:631–639. https://doi.org/10.1038/nature18307

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Xu F, Zhang J, Zhu B, Yu J, Xu J (2018) CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Appl Catal B 230:194–202. https://doi.org/10.1016/j.apcatb.2018.02.042

  5. Jin JR, He T (2017) Facile synthesis of Bi2S3 nanoribbons for photocatalytic reduction of CO2 into CH3OH. Appl Surf Sci 394:364–370. https://doi.org/10.1016/j.apsusc.2016.10.118

    Article  ADS  CAS  Google Scholar 

  6. Wang JY, Fu R, Wen SK, Ning P, Helal MH, Salem MA, Xu BB, El-Bahy ZM, Huang MN, Guo ZH, Huang L, Wang Q (2022) Progress and current challenges for CO2 capture materials from ambient air. Adv Compos Hybrid Mater 5:2721–2759. https://doi.org/10.1007/s42114-022-00567-3

    Article  CAS  Google Scholar 

  7. Zhao R B, Ding P, Wei P P, Zhang L C, Liu Q, Luo Y L, Li T S, Lu S Y, Shi X F, Gao S Y, Asiri A M, Wang Z M, Sun X P (2021) Recent progress in electrocatalytic methanation of CO2 at ambient conditions. Adv Funct Mater 31. https://doi.org/10.1002/adfm.202009449

  8. Hamukwaya SL, Zhao ZY, Hao HY, Abo-Dief HM, Abualnaja KM, Alanazi AK, Mashingaidze MM, El-Bahy SM, Huang M, Guo ZH (2022) Enhanced photocatalytic performance for hydrogen production and carbon dioxide reduction by a mesoporous single-crystal-like TiO2 composite catalyst. Adv Compos Hybrid Mater 5:2620–2630. https://doi.org/10.1007/s42114-022-00545-9

    Article  CAS  Google Scholar 

  9. Jin S, Hao ZM, Zhang K, Yan ZH, Chen J (2021) Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew. Chem. Int Ed 60:20627–20648. https://doi.org/10.1002/anie.202101818

    Article  CAS  Google Scholar 

  10. Ping D, Yi F, Zhang GW, Wu SD, Fang SM, Hu KL, Bin XuB, Ren JN, Guo ZH (2023) NH4Cl- assisted preparation of single Ni sites anchored carbon nanosheet catalysts for highly efficient carbon dioxide electroreduction. J Mater Sci Technol 142:1–9. https://doi.org/10.1016/j.jmst.2022.10.006

    Article  CAS  Google Scholar 

  11. Navarro-Jaen S, Virginie M, Bonin J, Robert M, Wojcieszak R, Khodakov AY (2021) Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat Rev Chem 5:564–579. https://doi.org/10.1038/s41570-021-00289-y

    Article  CAS  PubMed  Google Scholar 

  12. Bai SX, Shao Q, Wang PT, Dai QG, Wang XY, Huang XQ (2017) Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd-Cu nanoparticles. J Am Chem Soc 139:6827–6830. https://doi.org/10.1021/jacs.7b03101

    Article  CAS  PubMed  Google Scholar 

  13. Chen CS, Handoko AD, Wan JH, Ma L, Ren D, Yeo BS (2015) Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal Sci Technol 5:161–168. https://doi.org/10.1039/c4cy00906a

    Article  CAS  Google Scholar 

  14. Li M, Li P, Chang K, Wang T, Liu L, Kang Q, Ouyang S, Ye J (2015) Highly efficient and stable photocatalytic reduction of CO2 to CH4 over Ru loaded NaTaO3. Chem Commun 51:7645–7648. https://doi.org/10.1039/C5CC01124H

    Article  CAS  Google Scholar 

  15. Luo M, Liu Y, Hu J, Liu H, Li J (2012) One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability. ACS Appl Mater Interfaces 4:1813–1821. https://doi.org/10.1021/am3000903

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Jiang Z, Chen H, Wang K, Wang X (2022) Photocatalytic CO2 reduction with water vapor to CO and CH4 in a recirculation reactor by Ag-Cu2O/TiO2 Z-scheme heterostructures. J Alloys Compd 896. https://doi.org/10.1016/j.jallcom.2021.163030

  17. Lam E, Reisner E (2021) A TiO2 -Co(terpyridine)2 photocatalyst for the selective oxidation of cellulose to formate coupled to the reduction of CO2 to syngas. Angew Chem Int Ed Engl 60:23306–23312. https://doi.org/10.1002/anie.202108492

    Article  CAS  PubMed  Google Scholar 

  18. Adekoya D, Tahir M, Amin N A S (2019) Recent trends in photocatalytic materials for reduction of carbon dioxide to methanol. Renewable Sustainable Energy Rev 116. https://doi.org/10.1016/j.rser.2019.109389

  19. Kumar P, Matoh L, Kaur R, Štangar U L (2021) Synergic effect of manganese oxide on ceria based catalyst for direct conversion of CO2 to green fuel additive: Catalyst activity and thermodynamics study. Fuel 285. https://doi.org/10.1016/j.fuel.2020.119083

  20. Tang Z, He W, Wang Y, Wei Y, Yu X, Xiong J, Wang X, Zhang X, Zhao Z, Liu J (2022) Ternary heterojunction in rGO-coated Ag/Cu2O catalysts for boosting selective photocatalytic CO2 reduction into CH4. Appl Catal B 311. https://doi.org/10.1016/j.apcatb.2022.121371

  21. Li Y, Na W, Wang H, Gao W (2016) Hydrogenation of CO2 to methanol over Au–CuO/SBA-15 catalysts. J Porous Mater 24:591–599. https://doi.org/10.1007/s10934-016-0295-8

    Article  CAS  Google Scholar 

  22. Yuan L, Hung S-F, Tang Z-R, Chen HM, Xiong Y, Xu Y-J (2019) Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels. ACS Catal 9:4824–4833. https://doi.org/10.1021/acscatal.9b00862

    Article  CAS  Google Scholar 

  23. Lu S, Zhang Y, Lou F, Yu Z (2022) Theoretical study of single transition metal atom catalysts supported on two-dimensional Nb2NO2 for efficient electrochemical CO2 reduction to CH4. J. CO2 Util. 62:102069. https://doi.org/10.1016/j.jcou.2022.102069

  24. Wang J, Li Y, Zhao J, Xiong Z, Zhao Y, Zhang J (2022) PtCu alloy cocatalysts for efficient photocatalytic CO2 reduction into CH4 with 100% selectivity††Electronic supplementary information (ESI) available. Catal Sci Technol 12:3454–3463. https://doi.org/10.1039/d2cy00048b

    Article  CAS  Google Scholar 

  25. Li W, Seredych M, Rodriguez-Castellon E, Bandosz TJ (2016) Metal-free nanoporous carbon as a catalyst for electrochemical reduction of CO2 to CO and CH4. Chemsuschem 9:606–616. https://doi.org/10.1002/cssc.201501575

    Article  CAS  PubMed  Google Scholar 

  26. Han S, Hu X, Yang W, Qian Q, Fang X, Zhu Y (2018) Constructing the band alignment of graphitic carbon nitride (g-C3N4)/copper(I) oxide (Cu2O) composites by adjusting the contact facet for superior photocatalytic activity. ACS Appl Energy Mater 2:1803–1811. https://doi.org/10.1021/acsaem.8b01930

    Article  CAS  Google Scholar 

  27. Li JY, Zhang ZY, Cui W, Wang H, Cen WL, Johnson G, Jiang GM, Zhang S, Dong F (2018) The spatially oriented charge flow and photocatalysis mechanism on internal van der waals heterostructures enhanced g-C3N4. ACS Catal 8:8376–8385. https://doi.org/10.1021/acscatal.8b02459

    Article  CAS  Google Scholar 

  28. Guo L, You Y, Huang H, Tian N, Ma T, Zhang Y (2020) Z-scheme g-C3N4/Bi2O2[BO2(OH)] heterojunction for enhanced photocatalytic CO2 reduction. J Colloid Interface Sci 568:139–147. https://doi.org/10.1016/j.jcis.2020.02.025

    Article  ADS  CAS  PubMed  Google Scholar 

  29. He Y, Wang Y, Zhang L, Teng B, Fan M (2015) High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Appl Catal B 168–169:1–8. https://doi.org/10.1016/j.apcatb.2014.12.017

  30. Lee SC, Chae HJ, Lee SJ, Choi BY, Yi CK, Lee JB, Ryu CK, Kim JC (2008) Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environ Sci Technol 42:2736–2741. https://doi.org/10.1021/es702693c

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Li YC, Li LY, Luo SZ, Huang XB, Shen J, Jiang CF, Jing FL (2021) The role of K in tuning oxidative dehydrogenation of ethane with CO2 to be selective toward ethylene. Adv Compos Hybrid Mater 4:793–805. https://doi.org/10.1007/s42114-021-00280-7

    Article  CAS  Google Scholar 

  32. Wang JY, Chen K, Wang Y, Lei JM, Alsubaie A, Ning P, Wen SK, Zhang TP, Almalki ASA, Alhadhrami A, Lin ZP, Algadi H, Guo ZH (2022) Effect of K2CO3 doping on CO2 sorption performance of silicate lithium- based sorbent prepared from citric acid treated sediment. Chin J Chem Eng 51:10–20. https://doi.org/10.1016/j.cjche.2022.07.025

    Article  CAS  Google Scholar 

  33. Liu LM, Yang WY, Sun WZ, Li Q, Shang JK (2015) Creation of Cu2O@TiO2 composite photocatalysts with p-n heterojunctions formed on exposed Cu2O facets, their energy band alignment study, and their enhanced photocatalytic activity under illumination with visible light. ACS Appl Mater Interfaces 7:1465–1476. https://doi.org/10.1021/am505861c

    Article  CAS  PubMed  Google Scholar 

  34. Xiong J, Li Z, Chen J, Zhang S, Wang L, Dou S (2014) Facile synthesis of highly efficient one-dimensional plasmonic photocatalysts through Ag@Cu2O core–shell heteronanowires. ACS Appl Mater Interfaces 6:15716–15725. https://doi.org/10.1021/am502516s

    Article  CAS  PubMed  Google Scholar 

  35. Zhang F, Li Y H, Qi M Y, Tang Z R, Xu Y J (2020) Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Appl Catal B 268:118380. https://doi.org/10.1016/j.apcatb.2019.118380

  36. Murugadoss G, Jayavel R, Rajesh Kumar M (2015) Structural and optical properties of highly crystalline Ce, Eu and co-doped ZnO nanorods. Superlattices Microstruct 82:538–550. https://doi.org/10.1016/j.spmi.2015.03.010

    Article  ADS  CAS  Google Scholar 

  37. Cong Y, Li X, Qin Y, Dong Z, Yuan G, Cui Z, Lai X (2011) Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Appl Catal B 107:128–134. https://doi.org/10.1016/j.apcatb.2011.07.005

  38. Bekena F, Kuo D-H (2020) 10 nm sized visible light TiO2 photocatalyst in the presence of MgO for degradation of methylene blue. Mater Sci Semicond Process 116:105152. https://doi.org/10.1016/j.mssp.2020.105152

    Article  CAS  Google Scholar 

  39. Shao L, Jiang D, Xiao P, Zhu L, Meng S, Chen M (2016) Enhancement of g-C3N4 nanosheets photocatalysis by synergistic interaction of ZnS microsphere and RGO inducing multistep charge transfer. Appl Catal B 198:200–210. https://doi.org/10.1016/j.apcatb.2016.05.056

  40. Yoo I-h, Kalanur S S, Seo H (2019) A nanoscale p–n junction photoelectrode consisting of an NiOx layer on a TiO2/CdS nanorod core-shell structure for highly efficient solar water splitting. Appl Catal B 250:200–212. https://doi.org/10.1016/j.apcatb.2019.02.063

  41. Gao EP, Wang WZ, Shang M, Xu JH (2011) Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite. Phys Chem Chem Phys 13:2887–2893. https://doi.org/10.1039/c0cp01749c

    Article  CAS  PubMed  Google Scholar 

  42. Yu HJ, Shi R, Zhao YX, Bian T, Zhao YF, Zhou C, Waterhouse GIN, Wu LZ, Tung CH, Zhang TR (2017) Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv Mater 29:8. https://doi.org/10.1002/adma.201605148

    Article  CAS  Google Scholar 

  43. Wang B, He S, Zhang L, Huang X, Gao F, Feng W, Liu P (2019) CdS nanorods decorated with inexpensive NiCd bimetallic nanoparticles as efficient photocatalysts for visible-light-driven photocatalytic hydrogen evolution. Appl Catal B 243:229–235. https://doi.org/10.1016/j.apcatb.2018.10.065

  44. Xia S, Nie R, Lu X, Wang L, Chen P, Hou Z (2012) Hydrogenolysis of glycerol over Cu0.4/Zn5.6−xMgxAl2O8.6 catalysts: the role of basicity and hydrogen spillover. J Catal 296:1–11. https://doi.org/10.1016/j.jcat.2012.08.007

    Article  CAS  Google Scholar 

  45. Yuan ZL, Wang LN, Wang JH, Xia SX, Chen P, Hou ZY, Zheng XM (2011) Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl Catal B-Environ 101:431–440. https://doi.org/10.1016/j.apcatb.2010.10.013

    Article  CAS  Google Scholar 

  46. Shi JL, Chen R, Hao H, Wang C, Lang X (2020) 2D sp2 Carbon-conjugated porphyrin covalent organic framework for cooperative photocatalysis with TEMPO. Angew Chem Int Ed Engl 59:9088–9093. https://doi.org/10.1002/anie.202000723

    Article  CAS  PubMed  Google Scholar 

  47. Gong S, Zhu G, Wang R, Rao F, Shi X, Gao J, Huang Y, He C, Hojamberdiev M (2021) Synergistically boosting highly selective CO2–to–CO photoreduction over BiOCl nanosheets via in-situ formation of surface defects and non-precious metal nanoparticles. Appl Catal B-Environ 297:120413. https://doi.org/10.1016/j.apcatb.2021.120413

    Article  CAS  Google Scholar 

  48. Wang J, Bo T, Shao B, Zhang Y, Jia L, Tan X, Zhou W, Yu T (2021) Effect of S vacancy in Cu3SnS4 on high selectivity and activity of photocatalytic CO2 reduction. Appl Catal B-Environ 297:120498. https://doi.org/10.1016/j.apcatb.2021.120498

    Article  CAS  Google Scholar 

  49. R J,  Deji Â, Chauhan  M, Choudhary  B C Â, Sharma R K (2022) Density functional theory study of manganese doped armchair graphene nanoribbon for effective carbon dioxide gas sensing. ES Energy Environ 18:47–55. https://doi.org/10.30919/esee8c701

  50. Shkir M, Omar S, Manthremmel M A, Khan M A, Umar A (2022) Density functional theory studies on a Novel 1-Ethyl-4-phenyl-1,5-benzodiazepin-2-thione molecule and its derivatives for opto-nonlinear applications. Eng Sci 19:319–329. https://doi.org/10.30919/es8d714

  51. Fu L, Wang R, Zhao C, Huo J, He C, Kim K-H, Zhang W (2021) Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study. Chem Eng J 414. https://doi.org/10.1016/j.cej.2021.128857

Download references

Acknowledgements

We thank Dr. Zhanhua Huang, Dr. Houjuan Qi and Dr. Jinguang Hu for the guidance and help in the experiment and writing of the paper.

Funding

This study was supported by the National Natural Science Foundation of China (No. 32071713), Innovation Training Program for College Students (No. 202210225471), and the Natural Science Funds for Distinguished Young Scholars of Heilongjiang Province (JQ2019C001).

Author information

Authors and Affiliations

Authors

Contributions

JS, SC, CB, and LQ were in charge of doing experiments. JS, AW, and CS were in charge of writing. FK and CS were in charge of revision. ZH, HQ, and JH: conceptualization, methodology, guidance, and supervision. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Zhanhua Huang, Houjuan Qi or Jinguang Hu.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 640 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wang, A., An, Y. et al. Core@shell-structured catalysts based on Mg-O-Cu bond for highly selective photoreduction of carbon dioxide to methane. Adv Compos Hybrid Mater 7, 2 (2024). https://doi.org/10.1007/s42114-023-00801-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00801-6

Keywords

Navigation