Skip to main content

Advertisement

Log in

Multifunctional flexible, crosslinked composites composed of trashed MXene sediment with high electromagnetic interference shielding performance

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Developing novel nanomaterials for constructing multifunctional macrostructures in a facile, energy-efficient, sustainable, and scalable approach is urgently demanded yet remains highly challenging. Here, a type of freestanding, robust, highly flexible composite films composed of “trashed” MXene sediment (MS) are prepared in an ambient pressure casting approach. The typical green polymer of polyvinyl alcohol is employed to demonstrate the high potential of MS for constructing films with multifunctionalities, including electrically conductive, hydrophobic, photothermal, and electromagnetic interference (EMI) shielding performance. Upon the synergy of surface terminal functional groups, local defects, and numerous heterogeneous interfaces, the MS-based composites can have EMI shielding effectiveness (SE) of 76.2 dB in the X-band at the thickness of merely 590 µm and efficient SE value in the ultrabroadband frequency range of 8.2 to 40 GHz. Moreover, the EMI SE of the MS-based composites is widely controlled by adjusting the MS contents and film thickness. Combined with the sensitive and reliable photothermal performance, this work thus demonstrates a cost-effective, sustainable, and scalable strategy to prepare a type of multifunctional MS-based films with application potentials in thermal therapy, wearable electronics, electromagnetic compatible, and aerospace.

Graphical Abstract

The freestanding, yet robust and highly flexible composite films for EMI shields, which exhibits excellent mechanical strength and flexibility, good hydrophobicity, and water resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cao MS, Cao YZ, He P, Shu JC, Cao WQ, Yuan J (2019) 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem Eng J 359:1265–1302. https://doi.org/10.1016/j.cej.2018.11.051

    Article  CAS  Google Scholar 

  2. Wan HJ, Liu N, Tang J, Wen QY, Xiao X (2021) Substrate-independent Ti3C2Tx MXene waterborne paint for terahertz absorption and shielding. ACS Nano 15:13646–13652. https://doi.org/10.1021/acsnano.1c04656

    Article  CAS  Google Scholar 

  3. Cao WT, Ma C, Tan S, Ma MG, Wan PB, Chen F (2019) Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett 11:72. https://doi.org/10.1007/s40820-019-0304-y

    Article  CAS  Google Scholar 

  4. Jiang DW, Murugadoss V, Wang Y, Lin J, Ding T, Wang ZC, Shao Q, Wang QC, Liu H, Lu N, Wei RB, Subramania A, Guo ZH (2019) Electromagnetic interference shielding polymers and nanocomposites-a review. Polym Rev 59:280–337. https://doi.org/10.1080/15583724.2018.1546737

    Article  CAS  Google Scholar 

  5. Yao JR, Zhang L, Yang F, Jiao ZB, Tao XW, Yao ZJ, Zheng YM, Zhou JT (2022) Superhydrophobic Ti3C2Tx MXene/aramid nanofiber films for high-performance electromagnetic interference shielding in thermal environment. Chem Eng J 446:136945. https://doi.org/10.1016/j.cej.2022.136945

    Article  CAS  Google Scholar 

  6. Cao WT, Chen FF, Zhu YJ, Zhang YG, Jiang YY, Ma MG, Chen F (2018) Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12:4583–4593. https://doi.org/10.1021/acsnano.8b00997

    Article  CAS  Google Scholar 

  7. Wu XY, Tu TX, Dai Y, Tang PP, Zhang Y, Deng ZM, Li LL, Zhang HB, Yu ZZ (2021) Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett 13:148. https://doi.org/10.1007/s40820-021-00665-9

    Article  CAS  Google Scholar 

  8. Lee S, Jo I, Kang S, Jang B, Moon J, Park JB, Lee S, Rho S, Kim Y, Hong BH (2017) Smart contact lenses with graphene coating for electromagnetic interference shielding and dehydration protection. ACS Nano 11:5318–5324. https://doi.org/10.1021/acsnano.7b00370

    Article  CAS  Google Scholar 

  9. Luo JC, Wang L, Huang XW, Li B, Guo Z, Song X, Lin LW, Tang LC, Xue HG, Gao JF (2019) Mechanically durable, highly conductive, and anticorrosive composite fabrics with excellent self-cleaning performance for high-efficiency electromagnetic interference shielding. ACS Appl Mater Interfaces 11:10883–10894. https://doi.org/10.1021/acsami.8b22212

    Article  CAS  Google Scholar 

  10. Huang L, Li JJ, Li YB, Heb XD, Yuan Y (2019) Lightweight and flexible hybrid film based on delicate design of electrospun nanofibers for high-performance electromagnetic interference shielding. Nanoscale 11:8616–8625. https://doi.org/10.1039/C9NR02102G

    Article  CAS  Google Scholar 

  11. Xie PT, Liu Y, Feng M, Niu M, Liu CZ, Wu NN, Sui KY, Patil RR, Pan D, Guo ZH, Fan RH (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Ma 4:173–185. https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  12. Yu JW, Gu WH, Zhao HQ, Ji GB (2021) Lightweight, flexible and freestanding PVA/PEDOT: PSS/Ag NWs film for high-performance electromagnetic interference shielding. Sci China Mater 64:1723–1732. https://doi.org/10.1007/s40843-020-1557-3

    Article  CAS  Google Scholar 

  13. Gargama H, Thakur AK, Chaturvedi SK (2015) Polyvinylidene fluoride/nickel composite materials for charge storing, electromagnetic interference absorption, and shielding applications. J Appl Phys 117:224903. https://doi.org/10.1063/1.4922411

    Article  CAS  Google Scholar 

  14. Wei QW, Pei SF, Qian XT, Liu HP, Liu ZB, Zhang WM, Zhou TY, Zhang ZC, Zhang XF, Cheng HM, Ren WC (2020) Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv Mater 32:1907411. https://doi.org/10.1002/adma.201907411

    Article  CAS  Google Scholar 

  15. Song WL, Guan XT, Fan LZ, Cao WQ, Wang CY, Zhao QL, Cao MS (2015) Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J Mater Chem A 3:2097–2107. https://doi.org/10.1039/C4TA05939E

    Article  CAS  Google Scholar 

  16. Shen B, Zhai WT, Tao MM, Ling JQ, Zheng WG (2013) Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl Mater Interfaces 5:11383–11391. https://doi.org/10.1021/am4036527

    Article  CAS  Google Scholar 

  17. Zhang Z, Liu MX, Ibrahim MM, Wu HK, Wu Y, Li Y, Mersal GAM, El Azab IH, El-Bahy SM, Huang MN, Jiang YX, Liang GM, Xie PT, Liu CZ (2022) Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Ma 5:1054–1066. https://doi.org/10.1007/s42114-022-00486-3

    Article  CAS  Google Scholar 

  18. Liu MX, Wu HK, Yan Wu, Xie PT, Pashameah RA, Abo-Dief HM, El-Bahy SM, Wei YL, Li GX, Li WT, Liang GM, Liu CZ, Sun K, Fan RH (2022) The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Ma 5:2021–2030. https://doi.org/10.1007/s42114-022-00541-z

    Article  CAS  Google Scholar 

  19. Shamsabadi AA, Gh MS, Anasori B, Soroush M (2018) Antimicrobial mode-of-action of colloidal Ti3C2TX MXene nanosheets. ACS Sustain Chem Eng 6:16586–16596. https://doi.org/10.1021/acssuschemeng.8b03823

    Article  CAS  Google Scholar 

  20. Liu GY, Zou JH, Tang QY, Yang XY, Zhang YW, Zhang Q, Huang W, Chen P, Shao JJ, Dong XC (2017) Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Interfaces 9:40077–40086. https://doi.org/10.1021/acsami.7b13421

    Article  CAS  Google Scholar 

  21. Yang ZJ, Jiang L, Wang J, Liu FM, He JM, Liu A, Lv SY, You R, Yan X, Sun P, Wang CG, Duan Y, Lu GY (2021) Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sens Actuators B Chem 326:128828. https://doi.org/10.1016/j.snb.2020.128828

    Article  CAS  Google Scholar 

  22. Wang XF, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A (2015) Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat Commun 6:6544. https://doi.org/10.1038/ncomms7544

    Article  CAS  Google Scholar 

  23. Seh ZW, Fredrickson KD, Anasori B, Kibsgaard J, Strickler AL, Lukatskaya MR, Gogotsi Y, Jaramillo TF, Vojvodic A (2016) Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett 1:589–594. https://doi.org/10.1021/acsenergylett.6b00247

    Article  CAS  Google Scholar 

  24. Li XL, Yin XW, Liang S, Li MH, Cheng LF, Zhang LT (2019) 2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon 146:210–217. https://doi.org/10.1016/j.carbon.2019.02.003

    Article  CAS  Google Scholar 

  25. Wang XY, Liao SY, Wan YJ, Huang HP, Li XM, Hu YG, Zhu PL, Sun R, Wong CP (2022) Near-field and far-field EMI shielding response of lightweight and flexible MXene-decorated polyester textiles. Mater Today Phys 23:100644. https://doi.org/10.1016/j.mtphys.2022.100644

    Article  CAS  Google Scholar 

  26. Feng SY, Zhan ZY, Yi Y, Zhou ZH, Lu CH (2022) Facile fabrication of MXene/cellulose fiber composite film with homogeneous and aligned structure via wet co-milling for enhancing electromagnetic interference shielding performance. Compos Part A Appl Sci Manuf 157:106907. https://doi.org/10.1016/j.compositesa.2022.106907

    Article  CAS  Google Scholar 

  27. Zhang SL, Huang PF, Wang JL, Zhuang ZH, Zhang Z, Han WQ (2020) Fast and universal solution-phase flocculation strategy for scalable synthesis of various few-layered MXene powders. J Phys Chem Lett 11:1247–1254. https://doi.org/10.1021/acs.jpclett.9b03682

    Article  CAS  Google Scholar 

  28. Wu LM, You Q, Shan YX, Gan SW, Zhao YT, Dai XY, Xiang YJ (2018) Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity. Sens Actuators B Chem 277:210–215. https://doi.org/10.1016/j.snb.2018.08.154

    Article  CAS  Google Scholar 

  29. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM, Gogotsi Y (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140. https://doi.org/10.1126/science.aag2421

    Article  CAS  Google Scholar 

  30. Liu J, Zhang HB, Sun RH, Liu YF, Liu ZS, Zhou AG, Yu ZZ (2017) Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv Mater 29:1702367. https://doi.org/10.1002/adma.201702367

    Article  CAS  Google Scholar 

  31. Luo JC, Gao SJ, Luo H, Wang L, Huang XW, Guo Z, Lai XJ, Lin LW, Li RKY, Gao JF (2021) Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem Eng J 406:126898. https://doi.org/10.1016/j.cej.2020.126898

    Article  CAS  Google Scholar 

  32. Chen Y, Zhang HB, Yang YB, Wang M, Cao AY, Yu ZZ (2016) High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv Funct Mater 26:447–455. https://doi.org/10.1002/adfm.201503782

    Article  CAS  Google Scholar 

  33. Zeng ZH, Jin H, Chen MJ, Li WW, Zhou LC, Zhang Z (2016) Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv Funct Mater 26:303–310. https://doi.org/10.1002/adfm.201503579

    Article  CAS  Google Scholar 

  34. Wu XY, Han BY, Zhang HB, Xie X, Tu TX, Zhang Y, Dai Y, Yang R, Yu ZZ (2020) Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem Eng J 381:122622. https://doi.org/10.1016/j.cej.2019.122622

    Article  CAS  Google Scholar 

  35. Lee Y, Kim SJ, Kim YJ, Lim Y, Chae Y, Lee BJ, Kim YT, Han H, Gogotsi Y, Ahn CW (2020) Oxidation-resistant titanium carbide MXene films. J Mater Chem A 8:573–581. https://doi.org/10.1039/C9TA07036B

    Article  CAS  Google Scholar 

  36. Olshtrem A, Chertopalov S, Guselnikova O, Valiev RR, Cieslar M, Miliutina E, Elashnikov R, Fitl P, Postnikov P, Lancok J, Svorcik V, Lyutakov O (2021) Plasmon-assisted MXene grafting: tuning of surface termination and stability enhancement. 2D Mater 8:045037. https://doi.org/10.1088/2053-1583/ac27c0

    Article  CAS  Google Scholar 

  37. Abdolhosseinzadeh S, Schneider R, Verma A, Heier J, Nuesch F, Zhang CF (2020) Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv Mater 32:2000716. https://doi.org/10.1002/adma.202000716

    Article  CAS  Google Scholar 

  38. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene). Chem Mater 29:7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847

    Article  CAS  Google Scholar 

  39. Zhang CFJ, Pinilla S, McEyoy N, Cullen CP, Anasori B, Long E, Park SH, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu XH, Duesberg GS, Gogotsi Y, Nicolosi V (2017) Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater 29:4848–4856. https://doi.org/10.1021/acs.chemmater.7b00745

    Article  CAS  Google Scholar 

  40. Ma JL, Yang K, Jiang Y, Shen LX, Ma HT, Cui ZW, Du YH, Lin JB, Liu JS, Zhu N (2022) Integrating MXene waste materials into value-added products for smart wearable self-powered healthcare monitoring. Cell Rep Phys Sci 3:100908. https://doi.org/10.1016/j.xcrp.2022.100908

    Article  CAS  Google Scholar 

  41. Mariano M, Mashtalir O, Antonio FQ, Ryu WH, Deng BC, Xia FN, Gogotsi Y, Taylor AD (2016) Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale 8:16371–16378. https://doi.org/10.1039/C6NR03682A

    Article  CAS  Google Scholar 

  42. Chen XF, Zhu YZ, Zhang M, Sui JY, Peng WC, Li Y, Zhang GL, Zhang FB, Fan XB (2019) N-butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano 13:9449–9456. https://doi.org/10.1021/acsnano.9b04301

    Article  CAS  Google Scholar 

  43. Ma C, Cao WT, Zhang W, Ma MG, Sun WM, Zhang J, Chen F (2021) Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem Eng J 403:126438. https://doi.org/10.1016/j.cej.2020.126438

    Article  CAS  Google Scholar 

  44. Pu JH, Zhao X, Zha XJ, Bai L, Ke K, Bao RY, Liu ZY, Yang MB, Yang W (2019) Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J Mater Chem A 7:15913–15923. https://doi.org/10.1039/C9TA04352G

    Article  CAS  Google Scholar 

  45. Pandey RP, Rasheed PA, Gomez T, Azam RS, Mahmoud KA (2020) A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate. J Membr Sci 607:118139. https://doi.org/10.1016/j.memsci.2020.118139

    Article  CAS  Google Scholar 

  46. Li YQ, Umer R, Samad YA, Zheng LX, Liao K (2013) The effect of the ultrasonication pre-treatment of graphene oxide (GO) on the mechanical properties of GO/polyvinyl alcohol composites. Carbon 55:321–327. https://doi.org/10.1016/j.carbon.2012.12.071

    Article  CAS  Google Scholar 

  47. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681. https://doi.org/10.1021/bm901254n

    Article  CAS  Google Scholar 

  48. Jin XX, Wang JF, Dai LZ, Liu XY, Li L, Yang YY, Cao YX, Wang WJ, Wu H, Guo SY (2020) Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem Eng J 380:122475. https://doi.org/10.1016/j.cej.2019.122475

    Article  CAS  Google Scholar 

  49. Woo JH, Kim NH, Kim SI, Park OK, Lee JH (2020) Effects of the addition of boric acid on the physical properties of MXene/polyvinyl alcohol (PVA) nanocomposite. Compos B Eng 199:108205. https://doi.org/10.1016/j.compositesb.2020.108205

    Article  CAS  Google Scholar 

  50. Wang W, Yuen ACY, Long H, Yang W, Li AO, Song L, Hu Y, Yeoh GH (2021) Random nano-structuring of PVA/MXene membranes for outstanding flammability resistance and electromagnetic interference shielding performances. Compos B Eng 224:109174. https://doi.org/10.1016/j.compositesb.2021.109174

    Article  CAS  Google Scholar 

  51. Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  Google Scholar 

  52. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6:1322–1331. https://doi.org/10.1021/nn204153h

    Article  CAS  Google Scholar 

  53. Wang LB, Zhang H, Wang B, Shen CJ, Zhang CX, Hu QK, Zhou AG, Liu BZ (2016) Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron Mater Lett 12:702–710. https://doi.org/10.1007/s13391-016-6088-z

    Article  CAS  Google Scholar 

  54. Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum MW (2016) X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci 362:406–417. https://doi.org/10.1016/j.apsusc.2015.11.089

    Article  CAS  Google Scholar 

  55. Zeng ZH, Wu TT, Han DX, Ren Q, Siqueira G, Nystrom G (2020) Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14:2927–2938. https://doi.org/10.1021/acsnano.9b07452

    Article  CAS  Google Scholar 

  56. Usman KAS, Zhang JZ, Hegh DY, Rashed AO, Jiang DG, Lynch PA, Mota-Santiago P, Jarvis KL, Qin S, Prime EL, Naebe M, Henderson LC, Razal JM (2021) Sequentially bridged Ti3C2Tx MXene sheets for high performance applications. Adv Mater Interfaces 8:2002043. https://doi.org/10.1002/admi.202002043

    Article  CAS  Google Scholar 

  57. Gong S, Sheng XX, Li XL, Sheng MJ, Wu H, Lu X, Qu JP (2022) A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick-mortar” sandwich structure. Adv Funct Mater 32:2200570. https://doi.org/10.1002/adfm.202200570

    Article  CAS  Google Scholar 

  58. Hu YQ, Hou C, Shi YX, Wu JM, Yang D, Huang ZL, Wang Y, Liu YF (2022) Freestanding Fe3O4/Ti3C2Tx MXene/polyurethane composite film with efficient electromagnetic shielding and ultra-stretchable performance. Nanotechnology 33:165603. https://doi.org/10.1088/1361-6528/ac4878

    Article  Google Scholar 

  59. Liu HB, Fu RL, Su XQ, Wu BY, Wang H, Xu Y, Liu XH (2021) Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application. Compos Commun 23:100593. https://doi.org/10.1016/j.coco.2020.100593

    Article  Google Scholar 

  60. Hamedi MM, Hajian A, Fall AB, Hakansson K, Salajkova M, Lundell F, Wagberg L, Berglund LA (2014) Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8:2467–2476. https://doi.org/10.1021/nn4060368

    Article  CAS  Google Scholar 

  61. Zeng ZH, Jin H, Chen MJ, Li WW, Zhou LC, Xue X, Zhang Z (2017) Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 13:1701388. https://doi.org/10.1002/smll.201701388

    Article  CAS  Google Scholar 

  62. Peng MY, Qin FX (2021) Clarification of basic concepts for electromagnetic interference shielding effectiveness. J Appl Phys 130:225108. https://doi.org/10.1063/5.0075019

    Article  CAS  Google Scholar 

  63. Yan DX, Pang H, Li B, Vajtai R, Xu L, Ren PG, Wang JH, Li ZM (2015) Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv Funct Mater 25:559–566. https://doi.org/10.1002/adfm.201403809

    Article  CAS  Google Scholar 

  64. Rajavel K, Luo SB, Wan YJ, Yu XC, Hu YG, Zhu PL, Sun R, Wong CP (2020) 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation. Compos Part A Appl Sci Manuf 129:105693. https://doi.org/10.1016/j.compositesa.2019.105693

    Article  CAS  Google Scholar 

  65. Wang Y, Qi QB, Yin G, Wang W, Yu D (2021) Flexible, ultralight, and mechanically robust waterborne polyurethane/Ti3C2Tx MXene/nickel ferrite hybrid aerogels for high-performance electromagnetic interference shielding. ACS Appl Mater Interfaces 13:21831–21843. https://doi.org/10.1021/acsami.1c04962

    Article  CAS  Google Scholar 

  66. Sang M, Liu GH, Liu S, Wu YX, Xuan SH, Wang S, Xuan SY, Jiang WQ, Gong XL (2021) Flexible PTFE/MXene/PI soft electrothermal actuator with electromagnetic-interference shielding property. Chem Eng J 414:128883. https://doi.org/10.1016/j.cej.2021.128883

    Article  CAS  Google Scholar 

  67. Wei YY, Dai ZH, Zhang YF, Zhang WW, Gu J, Hu CS, Lin XY (2022) Multifunctional waterproof MXene-coated wood with high electromagnetic shielding performance. Cellulose 29:5883–5893. https://doi.org/10.1007/s10570-022-04609-3

    Article  CAS  Google Scholar 

  68. Hong SY, Sun Y, Lee J, Ma YF, Wang M, Nam JD, Suhr J (2021) 3D printing of free-standing Ti3C2Tx/PEO architecture for electromagnetic interference shielding. Polymer 236:124312. https://doi.org/10.1016/j.polymer.2021.124312

    Article  CAS  Google Scholar 

  69. Miao Z, Chen XH, Zhou HL, Liu P, Fu SL, Yang JJ, Gao YH, Ren YP, Rong D (2022) Interfacing MXene flakes on a magnetic fiber network as a stretchable, flexible, electromagnetic shielding fabric. Nanomaterials 12:20. https://doi.org/10.3390/nano12010020

    Article  CAS  Google Scholar 

  70. Tan CX, Dong ZG, Li YH, Zhao HG, Huang XY, Zhou ZC, Jiang JW, Long YZ, Jiang PK, Zhang TY, Sun B (2020) A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat Commun 11:3530. https://doi.org/10.1038/s41467-020-17301-6

    Article  CAS  Google Scholar 

  71. Cao WT, Ma C, Mao DS, Zhang J, Ma MG, Chen F (2019) MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv Funct Mater 29:1905898. https://doi.org/10.1002/adfm.201905898

    Article  CAS  Google Scholar 

  72. Lin H, Wang YW, Gao SS, Chen Y, Shi JL (2018) Theranostic 2D tantalum carbide (MXene). Adv Mater 30:1703284. https://doi.org/10.1002/adma.201703284

    Article  CAS  Google Scholar 

  73. Li KR, Chang TH, Li ZP, Yang HT, Fu FF, Li TT, Ho JS, Chen PY (2019) Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv Energy Mater 9:1901687. https://doi.org/10.1002/aenm.201901687

    Article  CAS  Google Scholar 

  74. Li RY, Zhang LB, Shi L, Wang P (2017) MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11:3752–3759. https://doi.org/10.1021/acsnano.6b08415

    Article  CAS  Google Scholar 

  75. Cao WT, Feng W, Jiang YY, Ma C, Zhou ZF, Ma MG, Chen Y, Chen F (2019) Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects. Mater Horizons 6(1057):1065. https://doi.org/10.1039/C8MH01566J

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of Shandong University Testing and Manufacturing Center for Advanced Materials.

Funding

This work was financially supported by the National Key R&D Program of China (No. 2021YFB3502500), National Natural Science Foundation of China (No. 22205131), Natural Science Foundation of Shandong Province (No. 2022HYYQ-014), Provincial Key Research and Development Program of Shandong (No. 2019JZZY010312, 2021ZLGX01), New 20 Funded Programs for Universities of Jinan (No. 2021GXRC036), and the Qilu Young Scholar Program of Shandong University (No. 31370082163127).

Author information

Authors and Affiliations

Authors

Contributions

Sinan Zheng: conceptualization, formal analysis, writing—original draft. Na Wu: investigation. Yue Liu: methodology. Qilei Wu: resources. Yunfei Yang: software. Bin Li: validation. Chenxi Hu: supervision. Jiurong Liu: project administration. Zhihui Zeng: writing—review and editing.

Corresponding authors

Correspondence to Na Wu, Jiurong Liu or Zhihui Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19701 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Wu, N., Liu, Y. et al. Multifunctional flexible, crosslinked composites composed of trashed MXene sediment with high electromagnetic interference shielding performance. Adv Compos Hybrid Mater 6, 161 (2023). https://doi.org/10.1007/s42114-023-00741-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00741-1

Keywords

Navigation