Skip to main content
Log in

The polymer-based thermal interface materials with improved thermal conductivity, compression resilience, and electromagnetic interference shielding performance by introducing uniformly melamine foam

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Polymer-based thermal interface materials (TIMs) have been widely used in electronics to enhance heat transfer through the chip to heat sink. However, it remains a severe challenge to build the efficient phonon transfer pathways for improving the thermal conductivity and heat dissipation ability to cope with the increasing power density. Nowadays, TIMs with introduced template have attracted a great deal of attention because of the continuously three-dimensional (3D) structures. Herein, the reduced graphene oxide (rGO) with 3D networks was fabricated through the self-sacrificing template of melamine foam. Meanwhile, the reduced graphene oxide/natural rubber (rGO/NR) TIMs were prepared by the vacuum-assisted infiltration approach. As a result, the obtained TIMs exhibited the improved thermal conductivity (1.53 W m−1 K−1) and the good electromagnetic interference (EMI) shielding performance (26 dB) in X band at the filler content of 1.15 vol%. The results proved that rGO/NR TIMs successfully achieved the balance performance between the thermal conductivity and EMI shielding performance, indicating a bright prospect in the application of next-generation electronics. More importantly, this strategy can provide valuable guideline for designing TIMs with the excellent comprehensive performance for the thermal management.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang J, Li C, Li J, Weng GJ, Su Y (2021) A multiscale study of the filler-size and temperature dependence of the thermal conductivity of graphene-polymer nanocomposites. Carbon N Y 175:259–270

    Article  CAS  Google Scholar 

  2. Zhang ZD, Li ZH, Zhao YH, Bi XR, Zhang ZY, Long ZK, Liu ZX, Zhang LJ, Cai WJ, Liu Y, Fan RH (2022) Dielectric enhancement effect in biomorphic porous carbon-based iron@ iron carbide ‘meta-powder’ for light-weight microwave absorption material design. Adv Compos Hybrid Mater 5(4):3176–3189

    Article  CAS  Google Scholar 

  3. Hoque M, Koh YR, Braun JL, Mamun A, Hopkins PE (2021) High in-plane thermal conductivity of aluminum nitride thin films. ACS Nano 15(6):9588–9599

    Article  CAS  Google Scholar 

  4. Koh YR, Cheng Z, Mamun A, Hoque M, Hopkins PE (2020) Bulk-like intrinsic phonon thermal conductivity of micrometer-thick AlN films. ACS Appl Mater Interf 12(26):29433–29450

    Google Scholar 

  5. Yao L, Cao W, Zhao J, Zheng Q, Wang Y, Jiang S, Pan Q, Song J, Zhu Y, Cao M (2022) Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage. J Mater Sci Technol 127:48–60

  6. Wang XY, Liao SY, Wan YJ, Huang HP, Li XM, Zhu PL, Sun R, Wong CP (2022) Near-field and far-field EMI shielding response of lightweight and flexible MXene-decorated polyester textiles. Mater Today Phys 23:100644

    Article  CAS  Google Scholar 

  7. Wang WY, Ma X, Shao YW, Qi XD, Yang JH, Wang Y (2021) Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. J Mater Chem A 9:5033–5044

    Article  CAS  Google Scholar 

  8. Zhang Y, Ruan K, Gu J (2021) Flexible Sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17:210951

    Google Scholar 

  9. Li XL, Sheng MJ, Gong S, Wu H, Chen XL, Lu X, Qu JP (2022) Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices. Chem Eng J 430:132928

    Article  CAS  Google Scholar 

  10. Fang HM, Guo HC, Hu YR, Ren YJ, Hsu PC, Bai SL (2020) In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Compos Sci Technol 188:107975

    Article  CAS  Google Scholar 

  11. Wang G, Liao X, Zou F, Song P, Tang W, Yang J, Li G (2021) Flexible TPU/MWCNTs/BN composites for frequency-selective electromagnetic shielding and enhanced thermal conductivity. Compos Comm 28:100953

    Article  Google Scholar 

  12. Yao B, Xu X, Li H, Han Z, Wang H (2020) Soft liquid-metal/elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding. Chem Eng J 410:128288

    Article  Google Scholar 

  13. Zhang ZY, Zhao YH, Li ZH, Zhang LJ, Liu ZX, Long ZK, Li YJ, Liu Y, Fan RH, Sun K, Zhang ZD (2022) Synthesis of carbon/SiO2 core-sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption. Adv Compos Hybrid Mater 5:513–524

    Article  CAS  Google Scholar 

  14. Wang ZD, Meng GD, Wang LL, Tian LL, Chen SY, Wu GL, Kong B, Cheng YH (2021) Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci Rep 11:2495

    Article  CAS  Google Scholar 

  15. Li J, Zhao X, Wu W, Ji X, Zhang L (2021) Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chem Eng J 415:129054

    Article  CAS  Google Scholar 

  16. Liu Y, Lu M, Wu K, Yao S, Du X, Chen G, Zhang Q, Liang L, Lu M (2019) Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4. Compos Sci Technol 174:1–10

    Article  Google Scholar 

  17. Liu P, Li X, Min P, Chang X, Shu C, Ding Y, Yu ZZ (2022) 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-micro Lett 22:1–15

    CAS  Google Scholar 

  18. Huang X, Zhi C, Lin Y, Bao H, Wu G, Jiang P, Mai YW (2020) Thermal conductivity of graphene-based polymer nanocomposites. Mater Sci Eng R Rep 142:100577

    Article  Google Scholar 

  19. Pan C, Kou KC, Zhang Y, Li ZY, Wu GL (2017) Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos B Eng 111:83–90

    Article  CAS  Google Scholar 

  20. Cui S, Wu W, Liu C, Wang Y, Chen Q, Liu X (2021) Modification of the three-dimensional graphene aerogel self-assembled network using a titanate coupling agent and its thermal conductivity mechanism with epoxy composites. Nanoscale 13:18247–18255

    Article  CAS  Google Scholar 

  21. Mha B, Ms A, Li MA, Nm C, Bz A, Hkt B, Tf A, Cbp A (2021) Electrically and thermally graded microcellular polymer/graphene nanoplatelet composite foams and their EMI shielding properties. Carbon 187:153–164

    Google Scholar 

  22. Jin LY, Wang P, Cao WJ, Song N, Ding P (2021) Isolated solid wall-assisted thermal conductive performance of three-dimensional anisotropic mxene/graphene polymeric composites. ACS Appl Mater Interfaces 14(1):1747–1756

    Article  Google Scholar 

  23. Zhan Y, Cheng Y, Yan N, Li Y, Xia H (2021) Lightweight and self-healing carbon nanotube/acrylic copolymer foams: toward the simultaneous enhancement of electromagnetic interference shielding and thermal insulation. Chem Eng J 417:129339

    Article  CAS  Google Scholar 

  24. Li JT, Zhang GC, Fan X, Gao Q, Zhang HM, Qin JB, Shi XT, Fang XM (2021) Microcellular epoxy/reduced graphene oxide/multi-walled carbon nanotube nanocomposite foams for electromagnetic interference shielding. Appl Surf Sci 552:149232

    Article  CAS  Google Scholar 

  25. Song P, Liu B, Liang C, Ruan K, Qiu H, Ma Z, Guo Y, Gu J (2021) Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-micro Lett 13(1):1–17

    Article  CAS  Google Scholar 

  26. Han J, Du G, Gao W, Bai H (2019) An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv Func Mater 29:1900412

    Article  Google Scholar 

  27. Dai W, Lv L, Ma T, Wang X, Ying J, Yan Q, Tan X, Gao J, Xue C, Yu J (2021) Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv Sci 8:2003734

    Article  CAS  Google Scholar 

  28. Luo FB, Yan PP, Li HZ, Qian QR, Huang BQ, Chen QH, Wu K, Lu MG (2020) Ultrahigh thermally conductive graphene filled liquid crystalline epoxy composites: preparation assisted by polyethylene glycol. Compos Sci Technol 200:108473

    Article  CAS  Google Scholar 

  29. An D, Li Z, Chen H, Liang C, Sun Z, Li J, Yao J, Liu Y, Wong C (2022) Modulation of covalent bonded boron nitride/graphene and three-dimensional networks to achieve highly thermal conductivity for polymer-based thermal interfacial materials. Compos A Appl Sci Manuf 156:106890

    Article  CAS  Google Scholar 

  30. Guo Y, Ruan K, Shi X (2020) Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos Sci Technol 193:108134

    Article  CAS  Google Scholar 

  31. Tan X, Yuan Q, Qiu M (2022) Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review. J Mater Sci Technol 117:238–250

    Article  CAS  Google Scholar 

  32. Wu B, Qian G, Yan Y (2022) Design of interconnected carbon fiber thermal management composites with effective EMI shielding activity. ACS Appl Mater Interfaces 14(43):49082–49093

    Article  CAS  Google Scholar 

  33. Sharma GK, James NR (2023) Flexible N-Doped carbon nanofiber-polydimethylsiloxane composite containing La0.85Sr0.15CoO3−δ nanoparticles for green EMI shielding. ACS App Nano Mater 6(7):6024–6035

  34. Yang Y, Gao J, Lei T, Yang J, Liu J (2020) Thermal conductivity and mechanical properties of polyimide composites with mixed fillers of BN flakes and SiC@SiO2 whiskers. Polym Eng Sci 60(5):1044–1053

    Article  CAS  Google Scholar 

  35. Feng CP, Chen LB, Tian GL, Wan SS, Bai L, Bao RY, Liu Z, Yang MB, Yang W (2019) Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics. ACS App Mater Interf 11(20):18739–18745

    Article  CAS  Google Scholar 

  36. Yang D, Wei Q, Yu L, Ni Y, Zhang L (2021) Natural rubber composites with enhanced thermal conductivity fabricated via modification of boron nitride by covalent and non-covalent interactions. Compos Sci Technol 202:108590

    Article  CAS  Google Scholar 

  37. Li JC, Zhao XY, Zhang ZX, Xian Y, Lin YT, Ji XW, Lu YL, Zhang LQ (2020) Construction of interconnected Al2O3 doped rGO network in natural rubber nanocomposites to achieve significant thermal conductivity and mechanical strength enhancement. Compos Sci Technol 186:107930

    Article  CAS  Google Scholar 

  38. Jia C, Zhang P, Seraji SM, Xie R, Chen L, Liu D, Xiong Y, Chen H, Fu Y, Xu H, Song P (2022) Effects of BN/GO on the recyclable, healable and thermal conductivity properties of ENR/PLA thermoplastic vulcanizates. Compos A Appl Sci Manuf 152:106686

    Article  CAS  Google Scholar 

  39. Li CQ, Wang J, Chen X, Song YZ, Jiang KJ, Fan HB, Tang M, Zhan WT, Liao SQ (2017) Structure and properties of reduced graphene oxide/natural rubber latex nanocomposites. J Nanosci Nanotechnol 17(2):1133–1139

    Article  CAS  Google Scholar 

  40. Ni Y, Yang D, Hu T, Wei Q, Guo W, Zhang L (2019) Fabrication of natural rubber dielectric elastomers with enhanced thermal conductivity via dopamine chemistry, Composites. Communications 16:132–135

    Google Scholar 

  41. Qin Y, Wang B, Hou X, Li L, Guan C, Pan Z et al (2022) Constructing Tanghulu-like Diamond@Silicon carbide nanowires for enhanced thermal conductivity of polymer composite. Compos Comm 29:101008

  42. Xiao W, Yu S, Cao X, Su K, Qu Q, Tan Y, Zhao F, Zhao S, Zhang G, Gao A, Cui J, Yan Y (2022) High-speed shear dispersion of MWCNTs assisted by PVP in water and its effective combination with wet-mixing technology for NR/MWCNTs nanocomposites. Polym Compos 43:3858–3870

    Article  CAS  Google Scholar 

  43. Tang Y, Ma L, He Y, Chen H, Jiang Y, Xu J (2019) Preparation and performance evaluation of natural rubber composites with aluminum nitride and aligned carbon nanotubes. Polym Sci Ser A 64:366–374

    Article  Google Scholar 

  44. Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O (2015) Thermally conductive graphene- polymer composites: size, percolation, and synergy effects. Chem Mater 27(6):2100–2106

    Article  CAS  Google Scholar 

  45. Foygel M, Morris RD, Anez D, French S, Sobolev VL (2005) Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys Rev B 71:104201

    Article  Google Scholar 

  46. Hu J, Huang Y, Zeng X, Li Q, Ren L, Sun R, Xu JB, Wong CP (2018) Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos Sci Technol 160:127–137

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52130303), Natural Science Foundation of Shanxi Province (Grant No. 20210302124430) and the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (Grant No. 20230016).

Author information

Authors and Affiliations

Authors

Contributions

Dong An: conceptualization, formal analysis, writing—original draft, Yucheng Chen: investigation, Rizheng He: investigation, Huitao Yu: formal analysis, Zhijian Sun: formal analysis, Yifan Liu: formal analysis, Yaqing Liu: supervision, Qingsong Lian: formal analysis, Wei Feng: supervision, Chingping Wong: supervision.

Corresponding authors

Correspondence to Yaqing Liu or Wei Feng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1171 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, D., Chen, Y., He, R. et al. The polymer-based thermal interface materials with improved thermal conductivity, compression resilience, and electromagnetic interference shielding performance by introducing uniformly melamine foam. Adv Compos Hybrid Mater 6, 136 (2023). https://doi.org/10.1007/s42114-023-00709-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00709-1

Keywords

Navigation