Skip to main content

Advertisement

Log in

An innovative modified calcium chloride hexahydrate–based composite phase change material for thermal energy storage and indoor temperature regulation

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Hydrated salt phase change materials (PCMs) can play an important role in the temperature regulation of buildings by storing and releasing latent heat. However, hydrated salt PCMs are affected by phase separation, supercooling, and leakage, which greatly limit their application. In this study, an innovative modified calcium chloride hexahydrate (CaCl2·6H2O) PCM was prepared with potassium chloride (KCl) as the temperature regulator and strontium hydroxide octahydrate (Sr(OH)2·8H2O) as the nucleating agent. Subsequently, 15 wt% expanded graphite (EG) was immersed into 85 wt% modified PCM to prepare form-stable composite PCM, which is suitable for space thermal regulation with a phase transition temperature of 26.25 °C, phase change enthalpy of 153.03 J/g and a thermal conductivity of 4.3893 W/(mK). After 500 heating–cooling cycles, the phase change temperature changed little, and enthalpy lost only 5.95%. The test chamber prepared with a composite PCM and polyvinyl chloride (PVC) board was studied to evaluate its temperature regulation performance. In the heating and cooling process, the indoor temperature is maintained at 24.5–27.5 °C for 180 to 652 min. Therefore, the prepared composite PCM can have a good application in the temperature management of buildings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qiu W, Hao Q, Annamareddy SHK et al (2022) Electric vehicle revolution and implications: ion battery and energy. Eng Sci 20:100–109. https://doi.org/10.30919/es8d772

  2. Wang J, Zhai ZJ, Jing Y, Zhang C (2010) Particle swarm optimization for redundant building cooling heating and power system. Appl Energy 87:3668–3679. https://doi.org/10.1016/j.apenergy.2010.06.021

    Article  Google Scholar 

  3. Chwieduk D (2003) Towards sustainable-energy buildings. Appl Energy 76:211–217. https://doi.org/10.1016/S0306-2619(03)00059-X

    Article  Google Scholar 

  4. Ma Y, Wang H, Zhang L et al (2022) Flexible phase change composite films with improved thermal conductivity and superb thermal reliability for electronic chip thermal management. Compos Part Appl Sci Manuf 163:107203. https://doi.org/10.1016/j.compositesa.2022.107203

    Article  CAS  Google Scholar 

  5. Raji B, Tenpierik MJ, van den Dobbelsteen A (2015) The impact of greening systems on building energy performance: a literature review. Renew Sustain Energy Rev 45:610–623. https://doi.org/10.1016/j.rser.2015.02.011

    Article  CAS  Google Scholar 

  6. Waqas A (2013) Phase change material (PCM) storage for free cooling of buildings-a review. Renew Sustain Energy Rev 18:607–625. https://doi.org/10.1016/j.rser.2012.10.034

    Article  Google Scholar 

  7. Liu S, Duvigneau J, Vancso GJ (2015) Nanocellular polymer foams as promising high performance thermal insulation materials. Eur Polym J 65:33–45. https://doi.org/10.1016/j.eurpolymj.2015.01.039

    Article  CAS  Google Scholar 

  8. Chen X, Gao H, Hai G et al (2020) Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy Storage Mater 26:129–137. https://doi.org/10.1016/j.ensm.2019.12.029

    Article  Google Scholar 

  9. Yang J, Tang L-S, Bai L et al (2019) High-performance composite phase change materials for energy conversion based on macroscopically three-dimensional structural materials. Mater Horiz 6:250–273. https://doi.org/10.1039/C8MH01219A

    Article  CAS  Google Scholar 

  10. Liu L, Fan X, Zhang Y et al (2020) Novel bio-based phase change materials with high enthalpy for thermal energy storage. Appl Energy 268:114979. https://doi.org/10.1016/j.apenergy.2020.114979

    Article  CAS  Google Scholar 

  11. Mehling H, Brütting M, Haussmann T (2022) PCM products and their fields of application - an overview of the state in 2020/2021. J Energy Storage 51:104354. https://doi.org/10.1016/j.est.2022.104354

    Article  Google Scholar 

  12. Huang J, Luo Y, Weng M et al (2021) Advances and applications of phase change materials (PCMs) and PCMs-based technologies. ES Mater Manuf 13:23–39. https://doi.org/10.30919/esmm5f458

  13. Guo J, Chen Z, El-Bahy ZM et al (2022) Tunable negative dielectric properties of magnetic CoFe2O4/graphite-polypyrrole metacomposites. Adv Compos Hybrid Mater 5:899–906. https://doi.org/10.1007/s42114-022-00485-4

    Article  CAS  Google Scholar 

  14. Cabeza LF, Castell A, Barreneche C et al (2011) Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev 15:1675–1695. https://doi.org/10.1016/j.rser.2010.11.018

    Article  CAS  Google Scholar 

  15. Su W, Darkwa J, Kokogiannakis G (2015) Review of solid–liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev 48:373–391. https://doi.org/10.1016/j.rser.2015.04.044

    Article  CAS  Google Scholar 

  16. Weng M, Liu S, Su J et al (2022) Hydrophobic and antimicrobial polyimide based composite phase change materials with thermal energy storage capacity, applied as multifunctional construction material. Eng Sci 19:301–311. https://doi.org/10.30919/es8e735

  17. Cao Y, Weng M, Mahmoud MHH et al (2022) Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater 5:1253–1267. https://doi.org/10.1007/s42114-022-00504-4

    Article  CAS  Google Scholar 

  18. Han H, Sun H, Lei F et al (2021) Flexible ethylene-vinyl acetate copolymer/fluorographene composite films with excellent thermal conductive and electrical insulation properties for thermal management. ES Mater Manuf 15:53–64. https://doi.org/10.30919/esmm5f523

  19. Pan D, Yang G, Abo-Dief HM et al (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14:118. https://doi.org/10.1007/s40820-022-00863-z

    Article  CAS  Google Scholar 

  20. Wang Y, Yu K, Ling X (2019) Experimental and modeling study on thermal performance of hydrated salt latent heat thermal energy storage system. Energy Convers Manag 198:111796. https://doi.org/10.1016/j.enconman.2019.111796

    Article  CAS  Google Scholar 

  21. Schmit H, Rathgeber C, Hoock P, Hiebler S (2020) Critical review on measured phase transition enthalpies of salt hydrates in the context of solid-liquid phase change materials. Thermochim Acta 683:178477. https://doi.org/10.1016/j.tca.2019.178477

    Article  CAS  Google Scholar 

  22. Purohit BK, Sistla VS (2021) Inorganic salt hydrate for thermal energy storage application: a review. Energy Storage 3:1–26. https://doi.org/10.1002/est2.212

    Article  CAS  Google Scholar 

  23. Deng Y, Li J, Deng Y et al (2018) Supercooling suppression and thermal conductivity enhancement of Na2HPO4·12H2O/expanded vermiculite form-stable composite phase change materials with alumina for heat storage. ACS Sustain Chem Eng 6:6792–6801. https://doi.org/10.1021/acssuschemeng.8b00631

    Article  CAS  Google Scholar 

  24. Kumar N, Hirschey J, LaClair TJ et al (2019) Review of stability and thermal conductivity enhancements for salt hydrates. J Energy Storage 24:100794. https://doi.org/10.1016/j.est.2019.100794

    Article  Google Scholar 

  25. Kenisarin M, Mahkamov K (2016) Salt hydrates as latent heat storage materials: thermophysical properties and costs. Sol Energy Mater Sol Cells 145:255–286. https://doi.org/10.1016/j.solmat.2015.10.029

    Article  CAS  Google Scholar 

  26. Dixit P, Reddy VJ, Parvate S et al (2022) Salt hydrate phase change materials: current state of art and the road ahead. J Energy Storage 51:104360. https://doi.org/10.1016/j.est.2022.104360

    Article  Google Scholar 

  27. Wu S, Yan T, Kuai Z, Pan W (2020) Experimental and numerical study of modified expanded graphite/hydrated salt phase change material for solar energy storage. Sol Energy 205:474–486. https://doi.org/10.1016/j.solener.2020.05.052

    Article  CAS  Google Scholar 

  28. Mohamed SA (2017) A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev 70:1072–1089. https://doi.org/10.1016/j.rser.2016.12.012

    Article  CAS  Google Scholar 

  29. Safari A, Saidur R, Sulaiman FA et al (2017) A review on supercooling of phase change materials in thermal energy storage systems. Renew Sustain Energy Rev 70:905–919. https://doi.org/10.1016/j.rser.2016.11.272

    Article  CAS  Google Scholar 

  30. Beaupere N, Soupremanien U, Zalewski L (2018) Nucleation triggering methods in supercooled phase change materials (PCM), a review. Thermochim Acta 670:184–201. https://doi.org/10.1016/j.tca.2018.10.009

    Article  CAS  Google Scholar 

  31. Mohamad AT, Che Sidik NA (2019) Nano-enhanced phase change material effects on the supercooling degree improvement: a review. IOP Conf Ser Mater Sci Eng 469:012036. https://doi.org/10.1088/1757-899X/469/1/012036

    Article  Google Scholar 

  32. Zhang H, Xu C, Fang G (2022) Encapsulation of inorganic phase change thermal storage materials and its effect on thermophysical properties: a review. Sol Energy Mater Sol Cells 241:111747. https://doi.org/10.1016/j.solmat.2022.111747

    Article  CAS  Google Scholar 

  33. Zhang Z, Lian Y, Xu X et al (2019) Synthesis and characterization of microencapsulated sodium sulfate decahydrate as phase change energy storage materials. Appl Energy 255:113830. https://doi.org/10.1016/j.apenergy.2019.113830

    Article  CAS  Google Scholar 

  34. An J, Yang E-H, Duan F et al (2021) Synthesis and characterization of robust SiO2-PCM microcapsules. ES Mater Manuf 15:34–45. https://doi.org/10.30919/esmm5f475

  35. Graham M, Coca-Clemente JA, Shchukina E, Shchukin D (2017) Nanoencapsulated crystallohydrate mixtures for advanced thermal energy storage. J Mater Chem A 5:13683–13691. https://doi.org/10.1039/C7TA02494K

    Article  CAS  Google Scholar 

  36. Guo X (2020) Study on inorganic PCMs modification utilized in building environment for energy conservation. Energy Sources Part Recovery Util Environ Eff 20:1–14. https://doi.org/10.1080/15567036.2020.1722294

    Article  CAS  Google Scholar 

  37. Schmit H, Pfeffer W, Rathgeber C, Hiebler S (2016) Calorimetric investigation of the concentration dependent enthalpy change around semicongruent melting CaCl2·6H2O. Thermochim Acta 635:26–33. https://doi.org/10.1016/j.tca.2016.04.023

    Article  CAS  Google Scholar 

  38. Charles JM (2019) Performance and stability of CaCl2·6H2O-based phase change materials. Ph.D. Thesis, Lehigh University, Bethlehem, PA, USA, 2019

  39. Kumar N, Banerjee D (2019) Thermal cycling of calcium chloride hexahydrate with strontium chloride as a phase change material for latent heat thermal energy storage applications in a nondifferential scanning calorimeter set-up. J Therm Sci Eng Appl 11:051014. https://doi.org/10.1115/1.4042859

    Article  CAS  Google Scholar 

  40. Sun W, Huang R, Ling Z et al (2018) Two types of composite phase change panels containing a ternary hydrated salt mixture for use in building envelope and ventilation system. Energy Convers Manag 177:306–314. https://doi.org/10.1016/j.enconman.2018.09.073

    Article  CAS  Google Scholar 

  41. Cao S, Luo X, Han X et al (2022) Development of a new modified CaCl2·6H2O composite phase change material. Energies 15:824. https://doi.org/10.3390/en15030824

    Article  CAS  Google Scholar 

  42. Xie N, Niu J, Wu T et al (2019) Fabrication and characterization of CaCl2·6H2O composite phase change material in the presence of CsxWO3 nanoparticles. Sol Energy Mater Sol Cells 200:110034. https://doi.org/10.1016/j.solmat.2019.110034

    Article  CAS  Google Scholar 

  43. Ye R, Jiang H, Wang J et al (2022) Fabrication and characteristics of eutectic hydrated salts/fumed silica composite as form-stable phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 238:111584. https://doi.org/10.1016/j.solmat.2022.111584

    Article  CAS  Google Scholar 

  44. Agron PA, Busing WR (1986) Calcium and strontium dichloride hexahydrates by neutron diffraction. Acta Crystallogr C 42:141–143. https://doi.org/10.1107/S0108270186097007

    Article  Google Scholar 

  45. Cao Y, Li W, Huang D et al (2022) One-step construction of novel phase change composites supported by a biomass/MXene gel network for efficient thermal energy storage. Sol Energy Mater Sol Cells 241:111729. https://doi.org/10.1016/j.solmat.2022.111729

    Article  CAS  Google Scholar 

  46. Tyagi VV, Pandey AK, Buddhi D, Kothari R (2016) Thermal performance assessment of encapsulated PCM based thermal management system to reduce peak energy demand in buildings. Energy Build 117:44–52. https://doi.org/10.1016/j.enbuild.2016.01.042

    Article  Google Scholar 

  47. Kaygusuz K (2003) Phase change energy storage for solar heating systems. Energy Sources 25:791–807. https://doi.org/10.1080/00908310390207837

    Article  CAS  Google Scholar 

  48. Pasupathy A, Velraj R (2008) Effect of double layer phase change material in building roof for year round thermal management. Energy Build 40:193–203. https://doi.org/10.1016/j.enbuild.2007.02.016

    Article  Google Scholar 

  49. Zhu XQ, Cao ZS, Hu J et al (2013) Experimental research on thermal energy storage of a new type of PCM heat exchange tube. Appl Mech Mater 320:104–108. https://doi.org/10.4028/www.scientific.net/AMM.320.104

    Article  CAS  Google Scholar 

  50. Koca A, Oztop HF, Koyun T, Varol Y (2008) Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector. Renew Energy 33:567–574. https://doi.org/10.1016/j.renene.2007.03.012

    Article  CAS  Google Scholar 

  51. Fu W, Lu Y, Zhang R et al (2020) Developing NaAc∙3H2O-based composite phase change material using glycine as temperature regulator and expanded graphite as supporting material for use in floor radiant heating. J Mol Liq 317:113932. https://doi.org/10.1016/j.molliq.2020.113932

    Article  CAS  Google Scholar 

  52. Fang Y, Ding Y, Tang Y et al (2019) Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating. Appl Therm Eng 150:1177–1185. https://doi.org/10.1016/j.applthermaleng.2019.01.069

    Article  CAS  Google Scholar 

  53. Xiao Q, Fan J, Fang Y et al (2018) The shape-stabilized light-to-thermal conversion phase change material based on CH3COONa·3H2O as thermal energy storage media. Appl Therm Eng 136:701–707. https://doi.org/10.1016/j.applthermaleng.2018.03.053

    Article  CAS  Google Scholar 

  54. Deng Z, Deng Q, Wang L et al (2021) Modifying coconut shell activated carbon for improved purification of benzene from volatile organic waste gas. Adv Compos Hybrid Mater 4:751–760. https://doi.org/10.1007/s42114-021-00273-6

    Article  CAS  Google Scholar 

  55. Huang J, Lin Y, Ji M et al (2020) Nitrogen-doped porous carbon derived from foam polystyrene as an anode material for lithium-ion batteries. Appl Surf Sci 504:144398. https://doi.org/10.1016/j.apsusc.2019.144398

    Article  CAS  Google Scholar 

  56. Duan Z, Zhang H, Sun L et al (2014) CaCl2·6H2O/Expanded graphite composite as form-stable phase change materials for thermal energy storage. J Therm Anal Calorim 115:111–117. https://doi.org/10.1007/s10973-013-3311-0

    Article  CAS  Google Scholar 

  57. Yang L, Yan H, Lam JC (2014) Thermal comfort and building energy consumption implications-a review. Appl Energy 115:164–173. https://doi.org/10.1016/j.apenergy.2013.10.062

    Article  Google Scholar 

  58. Cao Y, Zeng Z, Huang D et al (2022) Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage. Nano Res 15:8524–8535. https://doi.org/10.1007/s12274-022-4626-6

    Article  CAS  Google Scholar 

  59. Zou T, Fu W, Liang X et al (2020) Hydrophilic modification of expanded graphite to develop form-stable composite phase change material based on modified CaCl2·6H2O. Energy 190:116473. https://doi.org/10.1016/j.energy.2019.116473

    Article  CAS  Google Scholar 

  60. Shen R, Lian P, Cao Y et al (2022) All lignin-based sponge encapsulated phase change composites with enhanced solar-thermal conversion capability and satisfactory shape stability for thermal energy storage. J Energy Storage 54:105338. https://doi.org/10.1016/j.est.2022.105338

    Article  Google Scholar 

  61. Zou T, Fu W, Liang X et al (2018) Preparation and performance of modified calcium chloride hexahydrate composite phase change material for air-conditioning cold storage. Int J Refrig 95:175–181. https://doi.org/10.1016/j.ijrefrig.2018.08.001

    Article  CAS  Google Scholar 

  62. Shen R, Weng M, Zhang L et al (2022) Biomass-based carbon aerogel/Fe3O4@PEG phase change composites with satisfactory electromagnetic interference shielding and multi-source driven thermal management in thermal energy storage. Compos Part Appl Sci Manuf 163:107248. https://doi.org/10.1016/j.compositesa.2022.107248

    Article  CAS  Google Scholar 

  63. Ahmad M, Al-Dala’ien RNS, Beddu S, Itam ZB (2021) Thermo-physical properties of graphite powder and polyethylene modified asphalt concrete. Eng Sci 17:121–132. https://doi.org/10.30919/es8d569

  64. Huang D, Wang Z, Sheng X, Chen Y (2023) Bio-based MXene hybrid aerogel/paraffin composite phase change materials with superior photo and electrical responses toward solar thermal energy storage. Sol Energy Mater Sol Cells 251:112124. https://doi.org/10.1016/j.solmat.2022.112124

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Scientific and Technological Innovation Strategy Program of Guangdong Province, Guangdong-Hong Kong-Macao Technology Cooperation Funding Scheme (No. 2022A0505030026). Y. Chen acknowledges the support from National Natural Science Foundation of China (No. U20A20299) and Guangdong Special Support Program (No. 2017TX04N371).

Author information

Authors and Affiliations

Authors

Contributions

Ziheng Zeng: methodology, investigation, data curation, writing—original draft, and writing—review and editing; Danyuan Huang: validation, investigation, writing—original draft, and writing—review and editing; Li Zhang: resources, investigation; Xinxin Sheng: review and editing, project administration, supervision, formal analysis, funding acquisition; Ying Chen: resources, supervision, project administration, and funding acquisition.

Corresponding authors

Correspondence to Xinxin Sheng or Ying Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1276 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Huang, D., Zhang, L. et al. An innovative modified calcium chloride hexahydrate–based composite phase change material for thermal energy storage and indoor temperature regulation. Adv Compos Hybrid Mater 6, 80 (2023). https://doi.org/10.1007/s42114-023-00654-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00654-z

Keywords

Navigation