Skip to main content

Advertisement

Log in

Perovskite-loaded plasmonic gold nanorod composites enhanced solar cell performance

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

As a renewable green energy, solar cells can cope with environmental pollution and the shortage of fossil energy, so they are widely concerned by the scientific community. However, although the perovskite layer has excellent light absorption capacity, its thickness is limited in terms of the morphology and carrier migration. The use of surface plasmon resonance to enhance the performance of solar devices is one of the most promising concepts at present. In this paper, gold nanorods (AuNR) water solution was introduced into perovskite active layer to formed composites and the perovskite solar cells were prepared by one-step spin coating. The results showed that compared with the control group, the maximum short-circuit current density (Jsc) increased from 21.03 mA/cm2 of the control group to 21.6 mA/cm2 with 2vol% AuNR solution, the filling factor (FF) increased from 78.65 to 82%, and the power conversion efficiency (PCE) increased from 18.02 to 19.46%. Plasmon resonance effect enhances light-harvesting ability of perovskite layers. It promotes the separation of excitons, resulting in the formation of more carriers, the inhibition of carrier recombination, and the improvement of quantum efficiency (EQE) and filling factor (FF). Meanwhile, the presence of appropriate moisture promotes the crystallization of the film, enhances the quality of perovskite films and inhibits the carrier recombination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. He B, Xu Y, Zhu J et al (2021) Effects of the doping density of charge-transporting layers on regular and inverted perovskite solar cells: numerical simulations. Adv Compos Hybrid Mater 4(4):1146–1154. https://doi.org/10.1007/s42114-021-00343-9

    Article  CAS  Google Scholar 

  2. Chen C, Hu J, Xu Z et al (2021) Natural methionine-passivated MAPbI3 perovskite films for efficient and stable solar devices [J]. Adv Compos Hybrid Mater 4(4):1261–1269. https://doi.org/10.1007/s42114-021-00238-9

    Article  CAS  Google Scholar 

  3. Cai Y, Liang L, Gao P (2018) Promise of commercialization: carbon materials for low-cost perovskite solar cells. Chin Phys B 27(1):018805. https://doi.org/10.1088/1674-1056/27/1/018805

    Article  CAS  Google Scholar 

  4. Ellabban O, Abu-Rub H, Blaabjerg F (2014) Renewable energy resources: current status, future prospects and their enabling technology. Renew Sustain Energy Rev 39:748–764. https://doi.org/10.1016/j.rser.2014.07.113

    Article  Google Scholar 

  5. Gu H, Liu C, Zhu J et al (2018) Introducing advanced composites and hybrid materials. Adv Compos Hybrid Mater 1(1):1–5. https://doi.org/10.1007/s42114-017-0017-y

    Article  Google Scholar 

  6. Xu T, Chen L, Guo Z et al (2016) Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Phys Chem Chem Phys 18(39):27026–27050. https://doi.org/10.1039/c6cp04553g

    Article  CAS  Google Scholar 

  7. Pu L, Zhang J, Jiresse NKL et al (2022) N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv Compos Hybrid Mater 5(1):356–369. https://doi.org/10.1007/s42114-021-00371-5

    Article  CAS  Google Scholar 

  8. Metzger JO (2006) Beyond oil and gas: the methanol economy. By George A. Olah, Alain Goeppert, and G. K. Surya Prakash. Angew Chem Int Ed 45(31):5045–5047. https://doi.org/10.1002/anie.200685410

    Article  CAS  Google Scholar 

  9. Zhang Z, Zhang J, Li S et al (2019) Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Compos Part B Eng 176:107338. https://doi.org/10.1016/j.compositesb.2019.107338

    Article  CAS  Google Scholar 

  10. Koh TM, Fu K, Fang Y et al (2014) Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J Phys Chem C 118(30):16458–16462. https://doi.org/10.1021/jp411112k

    Article  CAS  Google Scholar 

  11. Li C, Feng M, Guo F et al (2022) The evolution of tin-based perovskites solar cells. Eng Sci 19:1–4. https://doi.org/10.30919/es8d638

  12. Bade BR, Rondiya SR, Kore KB et al (2021) Room temperature synthesis of formamidinium lead iodide (fapbi3) perovskite for low-cost absorber in solar cells. ES Energy Environ 13:31–36. https://doi.org/10.30919/esee8c463

  13. Yusoff ARBM, Nazeeruddin MK (2016) Organohalide lead perovskites for photovoltaic applications. J Phys Chem Letters 7(5):851–866. https://doi.org/10.1021/acs.jpclett.5b02893

    Article  CAS  Google Scholar 

  14. Liu T, Mai X, Chen H et al (2018) Carbon nanotube aerogel-CoS2 hybrid catalytic counter electrodes for enhanced photovoltaic performance dye-sensitized solar cells. Nanoscale 10(9):4194–4201. https://doi.org/10.1039/c7nr09260a

    Article  CAS  Google Scholar 

  15. Zhang J, Zhang W, Wei L et al (2019) Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol Mater Eng 304(12):1970035. https://doi.org/10.1002/mame.201970035

    Article  Google Scholar 

  16. Kojima A, Teshima K, Shirai Y et al (2009) Organometal Halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. https://doi.org/10.1021/ja809598r

    Article  Google Scholar 

  17. Im JH, Lee CR, Lee JW et al (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093. https://doi.org/10.1039/c1nr10867k

    Article  CAS  Google Scholar 

  18. Pellet N, Gao P, Gregori G et al (2014) Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew Chem Int Ed 53(12):3151–3157. https://doi.org/10.1002/anie.201309361

    Article  CAS  Google Scholar 

  19. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398. https://doi.org/10.1038/nature12509

    Article  CAS  Google Scholar 

  20. Yao X, Ding Y, Zhang X et al (2015) A review of the perovskite solar cells. Acta Phys Sin 64(3):038805. https://doi.org/10.7498/aps.64.038805

    Article  CAS  Google Scholar 

  21. Zhou H, Chen Q, Li G et al (2014) Interface engineering of highly efficient perovskite solar cells. Science 345(6196):542–546. https://doi.org/10.1126/science.1254050

    Article  CAS  Google Scholar 

  22. Yang Woon S, Noh Jun H, Jeon Nam J et al (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240):1234–1237. https://doi.org/10.1126/science.aaa9272

    Article  CAS  Google Scholar 

  23. Li X, Bi D, Yi C et al (2016) A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 353(6294):58–62. https://doi.org/10.1126/science.aaf8060

    Article  CAS  Google Scholar 

  24. Yang Woon S, Park B-W, Jung Eui H et al (2017) Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345):1376–1379. https://doi.org/10.1126/science.aan2301

    Article  CAS  Google Scholar 

  25. Seok SI, Grätzel M, Park N-G (2018) Methodologies toward highly efficient perovskite solar cells. Small 14(20):1704177. https://doi.org/10.1002/smll.201704177

    Article  CAS  Google Scholar 

  26. Jeon NJ, Na H, Jung EH et al (2018) A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3(8):682–689. https://doi.org/10.1038/s41560-018-0200-6

    Article  CAS  Google Scholar 

  27. Ibn-Mohammed T, Koh SCL, Reaney IM et al (2017) Perovskite solar cells: an integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew Sustain Energy Rev 80:1321–1344. https://doi.org/10.1016/j.rser.2017.05.095

    Article  CAS  Google Scholar 

  28. Gao Y, Zhang J, Zhang Z et al (2021) Plasmon-Enhanced perovskite solar cells with efficiency beyond 21 %: the asynchronous synergistic effect of water and gold Nanorods. ChemPlusChem 86(2):291–297. https://doi.org/10.1002/cplu.202000792

    Article  CAS  Google Scholar 

  29. Chen H, Luo Q, Liu T et al (2020) Boosting multiple interfaces by Co-Doped graphene quantum dots for high efficiency and durability perovskite solar cells. ACS Appl Mater Interfaces 12(12):13941–13949. https://doi.org/10.1021/acsami.9b23255

    Article  CAS  Google Scholar 

  30. Andrianov AV, Aleshin AN (2020) Terahertz Absorption in composite films based on organometallic perovskite and mixed cellulose ester [J]. Tech Phys Lett 46(5):510–513. https://doi.org/10.1134/S1063785020050181

    Article  CAS  Google Scholar 

  31. Zhao XY, Yan GH, Sun Y et al (2019) Preparation of ethyl cellulose composite film with down conversion luminescence properties by doping perovskite quantum dots. ChemistrySelect 4(21):6516–6523. https://doi.org/10.1002/slct.201900822

    Article  CAS  Google Scholar 

  32. Isaev NK, Aleshin AN (2021) Photoelectric properties of composite films based on organometallic perovskite ch3nh3pbbr3 modified with mixed cellulose ester. Phys Solid State 63(1):160–164. https://doi.org/10.1134/S1063783421010121

    Article  CAS  Google Scholar 

  33. Xia PF, Lu Y, Li YZ et al (2020) Solution-processed quasi-two-dimensional/nanoscrystals perovskite composite film enhances the efficiency and stability of perovskite light-emitting diodes. ACS Appl Mater Interfaces 12(35):39720–39729. https://doi.org/10.1021/acsami.0c07547

    Article  CAS  Google Scholar 

  34. Jung JW, Son SH, Choi J (2021) Polyaniline/reduced graphene oxide composites for hole transporting layer of high-performance inverted perovskite solar cells. Polymers. https://doi.org/10.3390/polym13081281

    Article  Google Scholar 

  35. Que M, Zhu L, Yang Y et al (2018) Tunable plasmon-enhanced broadband light harvesting for perovskite solar cells. J Power Sources 383:42–49. https://doi.org/10.1016/j.jpowsour.2018.02.050

    Article  CAS  Google Scholar 

  36. John PI, Wang SG (2013) Plasma sciences and the creation of wealth.  Science Press, 28–42

  37. Wang J (2014) A review of recent progress in plasmon-assisted nanophotonic devices. Front Optoelectron 7(3):320–337. https://doi.org/10.1007/s12200-014-0469-4

    Article  Google Scholar 

  38. Thrithamarassery Gangadharan D, Xu Z, Liu Y et al (2017) Recent advancements in plasmon-enhanced promising third-generation solar cells. Nanophotonics 6(1):153–175. https://doi.org/10.1515/nanoph-2016-0111

    Article  CAS  Google Scholar 

  39. Chan K, Wright M, Elumalai N et al (2017) Plasmonics in organic and perovskite solar cells: optical and electrical effects. Adv Opt Mater 5(6):1600698. https://doi.org/10.1002/adom.201600698

    Article  CAS  Google Scholar 

  40. Liu S, Liang L, Meng L et al (2020) Synergy of plasmonic silver nanorod and water for enhanced planar perovskite photovoltaic devices. Solar RRL 4(2):1900231. https://doi.org/10.1002/solr.201900231

    Article  CAS  Google Scholar 

  41. Zhang J, Gao Y, Jiao Y et al (2020) The Graphene/Fe(3)O(4) Nanocomposites as electrode materials of supercapacitors. J Nanosci Nanotechnol 20(5):3164–3173. https://doi.org/10.1166/jnn.2020.17391

    Article  CAS  Google Scholar 

  42. Li Y, Kan C, Wang C et al (2014) Surface plasmon resonance coupling effect of assembled gold nanorods based on the FDTD simulation. Acta Phys-Chim Sin 30(10):1827–1836. https://doi.org/10.3866/pku.Whxb201408011

    Article  CAS  Google Scholar 

  43. Luo Q, Ma H, Hou Q et al (2018) Perovskite solar cells: all-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater 28(11):1870069. https://doi.org/10.1002/adfm.201870069

    Article  Google Scholar 

  44. Jiang J, Xu J, Walter H et al (2020) The Doping of alkali metal for halide perovskites. ES Mater Manuf 7:25–33. https://doi.org/10.30919/esmm5f705

  45. Wang JJ, Hu QK, Li MZ et al (2020) Poly(3-hexylthiophene)/Gold nanorod composites as efficient hole-transporting materials for perovskite solar cells. Solar RRL. https://doi.org/10.1002/solr.202000109

    Article  Google Scholar 

  46. Tonui P, Arbab EAA, Mola GT (2019) Metal nano-composite as charge transport co-buffer layer in perovskite based solar cell. J Phys Chem Solids 126:124–130. https://doi.org/10.1016/j.jpcs.2018.09.019

    Article  CAS  Google Scholar 

  47. Xia ZT, Zhang CX, Feng ZY et al (2020) Synergetic effect of plasmonic gold nanorods and MgO for perovskite solar cells. Nanomaterials. https://doi.org/10.3390/nano10091830

    Article  Google Scholar 

  48. Zhu T, Shen LN, Xun SN et al (2022) High-performance ternary perovskite-organic solar cells. Adv Mater. https://doi.org/10.1002/adma.202109348

    Article  Google Scholar 

  49. Luo Q, Ma H, Hao F et al (2017) Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv Func Mater 27(42):1703068. https://doi.org/10.1002/adfm.201703068

    Article  CAS  Google Scholar 

  50. Deng WQ, Yuan ZT, Liu SH et al (2019) Plasmonic enhancement for high-efficiency planar heterojunction perovskite solar cells. J Power Sources 432:112–118. https://doi.org/10.1016/j.jpowsour.2019.05.067

    Article  CAS  Google Scholar 

  51. Tian X-D, Lin Y, Dong J-C et al (2017) Synthesis of Ag nanorods with highly tunable plasmonics toward optimal surface-enhanced raman scattering substrates self-assembled at interfaces. Adv Opt Mater 5(21):1700581. https://doi.org/10.1002/adom.201700581

    Article  CAS  Google Scholar 

  52. Gong J, Darling SB, You F (2015) Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts [J]. Energy Environ Sci 8(7):1953–1968. https://doi.org/10.1039/C5EE00615E

    Article  CAS  Google Scholar 

  53. Zhang W, Xiong J, Li J et al (2019) Mechanism of water effect on enhancing the photovoltaic performance of triple-cation hybrid perovskite solar cells. ACS Appl Mater Interfaces 11(13):12699–12708. https://doi.org/10.1021/acsami.8b20264

    Article  CAS  Google Scholar 

  54. Gong X, Li M, Shi X-B et al (2015) Controllable Perovskite crystallization by water additive for high-performance solar cells. Adv Func Mater 25(42):6671–6678. https://doi.org/10.1002/adfm.201503559

    Article  CAS  Google Scholar 

  55. Chiang C-H, Nazeeruddin MK, Grätzel M et al (2017) The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ Sci 10(3):808–817. https://doi.org/10.1039/C6EE03586H

    Article  CAS  Google Scholar 

  56. Meng G, Shi Y, Wang X et al (2018) New insight into the ultra-long lifetime of excitons in organic–inorganic perovskite: Reverse intersystem crossing. J Energy Chem 27(5):1496–1500. https://doi.org/10.1016/j.jechem.2017.10.018

    Article  Google Scholar 

  57. Zhang R, Zhou Y, Peng L et al (2016) Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures. Sci Rep 6(1):25036. https://doi.org/10.1038/srep25036

    Article  CAS  Google Scholar 

  58. Xu X, Du Q, Peng B et al (2014) Effect of shell thickness on small-molecule solar cells enhanced by dual plasmonic gold-silica nanorods. Appl Phys Lett 105(11):113306. https://doi.org/10.1063/1.4896516

    Article  CAS  Google Scholar 

  59. Turren-Cruz S-H, Saliba M, Mayer MT et al (2018) Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ Sci 11(1):78–86. https://doi.org/10.1039/C7EE02901B

    Article  CAS  Google Scholar 

  60. Wang C, Gao Y, Qiu Z-L et al (2022) D6h Symmetric radical donor-acceptor nanographene modulated interfacial carrier transfer for high-performance perovskite solar cells. CCS Chemistry 1–38. https://doi.org/10.31635/ccschem.022.202202433

  61. Zhang Z, Geng S, Zhang J et al (2022) Atomic permutation toward new Ruddlesden-Popper Two-dimensional perovskite with the smallest interlayer spacing. J Phys Chem C 126(19):8268–8277. https://doi.org/10.1021/acs.jpcc.2c02641

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from National Natural Science Foundation of China (Grant No:21975260), Jiangsu graduate research and practice innovation plan (Project No: KYCX20_3131), and Fujian Natural Science Foundation (Project No:2019 J01123).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaming Yu, Jiaoxia Zhang or Peng Gao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2497 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Liu, S., Li, H. et al. Perovskite-loaded plasmonic gold nanorod composites enhanced solar cell performance. Adv Compos Hybrid Mater 6, 55 (2023). https://doi.org/10.1007/s42114-023-00627-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00627-2

Keywords

Navigation