Skip to main content

Advertisement

Log in

Remarkable thermoelectric performance of carbon-based schwarzites

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Thermoelectric materials have potential applications in waste heat recovery and solid-state cooling due to the direct energy conversion between heat and electricity. Among the reported materials, carbon-based materials have a promising prospect in commercialization due to their nontoxic and abundant properties and solution machinability. Based on density functional theory (DFT) and Boltzmann transport equation (BTE), we have investigated the electronic and thermoelectric transport properties of schwarzite Cn (n is the chiral parameter of carbon nanotubes (n, 0)), a new carbon-based material. The carbon atoms at the junction of the material present a weak chemical bond state, and the charges are concentrated at the junction, which makes schwarzites have good conductivity and reactivity. In this paper, we select n = 6, 7, 8, 9, 10, 11, and 12 to explore the properties of schwarzites. The dual-polarization effect promotes the peak thermoelectric figure of merit (zT) of this structure in the low-temperature region. Schwarzite C8 reaches a maximum zT value of 4.91 at 255 K, while schwarzite C11 achieves a maximum zT value of 4.61 at 360 K. This study provides a new type of carbon-based thermoelectric material, whose zT is higher than the existing carbon-based thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He D, Ji P, Zhu W, Nie X, Su X, Tang X, Shen B, Dong X, Yang J, Liu Y, Shi J (2017) Corrigendum: superparamagnetic enhancement of thermoelectric performance. Nature 551(7680):398. https://doi.org/10.1038/nature24479

    Article  CAS  Google Scholar 

  2. Wang N, Li M, Xiao H, Gao Z, Liu Z, Zu X, Li S, Qiao L (2021) Band degeneracy enhanced thermoelectric performance in layered oxyselenides by first-principles calculations. npj Comput Mater 7(1):18. https://doi.org/10.1038/s41524-020-00476-3

    Article  CAS  Google Scholar 

  3. Zhao S, Wang HW (2020) An integrated H-type method to measure thermoelectric properties of two-dimensional materials. ES Energy Environ 9:59–66. https://doi.org/10.30919/esee8c262

    Article  CAS  Google Scholar 

  4. Wang Z, Yang M, Zhang H (2021) Strain engineering on electrocaloric effect in PbTiO3 and BaTiO3. Adv Compos Hybrid Mater 4(4):1239–1247. https://doi.org/10.1007/s42114-021-00257-6

    Article  CAS  Google Scholar 

  5. Zhen Y-X, Yang M, Zhang H, Fu G-S, Wang J-L, Wang S-F, Wang R-N (2017) Ultrahigh power factors in P-type 1T-ZrX2 (X = S, Se) single layers. Sci Bull 62(22):1530–1537. https://doi.org/10.1016/j.scib.2017.10.022

    Article  CAS  Google Scholar 

  6. Wang Z, Yang M, Jiang Q, Zheng K, Ma Y, Zhang H (2021) Improving the thermoelectric properties of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene-based organic semiconductors by isotropic strain. ES Mater Manuf 16:66–77. https://doi.org/10.30919/esmm5f489

    Article  CAS  Google Scholar 

  7. He Z, Yang M, Wang L, Bao E, Zhang H (2021) Concentrated photovoltaic thermoelectric hybrid system: an experimental and machine learning study. Eng Sci 15:47–56. https://doi.org/10.30919/es8d440

    Article  Google Scholar 

  8. He Z, Yang M, Wang Z, Chen H, Zhang X, Jiang Q, Murugadoss V, Huang M, Guo Z, Zhang H (2022) Optimization of segmented thermoelectric devices composed of high-temperature thermoelectric material La2Te3. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00471-w

    Article  Google Scholar 

  9. Han G, Sun Y, Feng Y, Lin G, Lu N (2021) Machine learning regression guided thermoelectric materials discovery – a review. ES Mater Manuf 14:20–35. https://doi.org/10.30919/esmm5f451

    Article  CAS  Google Scholar 

  10. Jaziri N, Boughamoura A, Müller J, Mezghani B, Tounsi F, Ismail M (2020) A comprehensive review of thermoelectric generators: technologies and common applications. Energy Rep 6:264–287. https://doi.org/10.1016/j.egyr.2019.12.011

    Article  Google Scholar 

  11. Xin J, Tang Y, Liu Y, Zhao X, Pan H, Zhu T (2018) Valleytronics in thermoelectric materials. npj Quantum Mater 3(1):9. https://doi.org/10.1038/s41535-018-0083-6

    Article  Google Scholar 

  12. Jin M, Chen Z, Tan X, Shao H, Liu G, Hu H, Xu J, Yu B, Shen H, Xu J, Jiang H, Pei Y, Jiang J (2018) Charge transport in thermoelectric SnSe single crystals. ACS Energy Lett 3(3):689–694. https://doi.org/10.1021/acsenergylett.7b01259

    Article  CAS  Google Scholar 

  13. Biswas K, He J, Blum ID, Chun I, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG (2012) Correction: corrigendum: high-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 490(7421):570–570. https://doi.org/10.1038/nature11645

    Article  CAS  Google Scholar 

  14. Ran F, Yang X, Shao L (2018) Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Adv Compos Hybrid Mater 1(1):32–55. https://doi.org/10.1007/s42114-017-0021-2

    Article  CAS  Google Scholar 

  15. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  16. Yadav N, Tyagi M, Wadhwa S, Mathur A, Narang J (2020) Few biomedical applications of carbon nanotubes. Methods Enzymol 630:347–363. https://doi.org/10.1016/bs.mie.2019.11.005

    Article  CAS  Google Scholar 

  17. Partha R, Conyers JL (2009) Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomed 4:261–275

    CAS  Google Scholar 

  18. Miao T, Shi S, Yan S, Ma W, Zhang X, Takahashi K, Ikuta T (2016) Integrative characterization of the thermoelectric performance of an individual multiwalled carbon nanotube. J Appl Phys 120(12):124302. https://doi.org/10.1063/1.4962942

    Article  CAS  Google Scholar 

  19. Zhang Y, Zhang Q, Chen G (2020) Carbon and carbon composites for thermoelectric applications. Carbon Energy 2(3):408–436. https://doi.org/10.1002/cey2.68

    Article  CAS  Google Scholar 

  20. Braun E, Lee Y, Moosavi SM, Barthel S, Mercado R, Baburin IA, Proserpio DM, Smit B (2018) Generating carbon schwarzites via zeolite-templating. Proc Natl Acad Sci USA 115(35):E8116–E8124. https://doi.org/10.1073/pnas.1805062115

    Article  CAS  Google Scholar 

  21. Pun SH, Miao Q (2018) Toward negatively curved carbons. Acc Chem Res 51(7):1630–1642. https://doi.org/10.1021/acs.accounts.8b00140

    Article  CAS  Google Scholar 

  22. Sajadi SM, Owuor PS, Schara S, Woellner CF, Rodrigues V, Vajtai R, Lou J, Galvao DS, Tiwary CS, Ajayan PM (2018) Multiscale geometric design principles applied to 3D printed schwarzites. Adv Mater 30(1):1704820. https://doi.org/10.1002/adma.201704820

    Article  CAS  Google Scholar 

  23. Morishita T, Tsumura T, Toyoda M, Przepiorski J, Morawski AW, Konno H, Inagaki M (2010) A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon 48(10):2690–2707. https://doi.org/10.1016/j.carbon.2010.03.064

    Article  CAS  Google Scholar 

  24. Odkhuu D, Jung DH, Lee H, Han SS, Choi S-H, Ruoff RS, Park N (2014) Negatively curved carbon as the anode for lithium ion batteries. Carbon 66:39–47. https://doi.org/10.1016/j.carbon.2013.08.033

    Article  CAS  Google Scholar 

  25. Borges DD, Galvao DS (2018) Schwarzites for natural gas storage: a grand-canonical Monte Carlo study. MRS Adv 3(1–2):115–120. https://doi.org/10.1557/adv.2018.190

    Article  CAS  Google Scholar 

  26. Collins SP, Perim E, Daff TD, Skaf MS, Galvão DS, Woo TK (2018) Idealized carbon-based materials exhibiting record deliverable capacities for vehicular methane storage. J Phys Chem C 123(2):1050–1058. https://doi.org/10.1021/acs.jpcc.8b09447

    Article  CAS  Google Scholar 

  27. Seok JH, Jun B, Lee CH, Lee SU (2022) Theoretical investigations into the hydrogen evolution reaction of the carbon schwarzites: from electronics to structure-catalytic activity relationship. Carbon 190:136–141. https://doi.org/10.1016/j.carbon.2021.12.092

    Article  CAS  Google Scholar 

  28. Pereira LFC, Savic I, Donadio D (2013) Thermal conductivity of one-, two- and three-dimensional sp(2) carbon. New J Phys 15:105019. https://doi.org/10.1088/1367-2630/15/10/105019

    Article  CAS  Google Scholar 

  29. Zhang Z, Chen J, Li B (2017) Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals. Nanoscale 9(37):14208–14214. https://doi.org/10.1039/c7nr04944g

    Article  CAS  Google Scholar 

  30. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  31. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  32. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  33. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  34. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41(3):653–658. https://doi.org/10.1107/s0021889808012016

    Article  CAS  Google Scholar 

  35. Madsen GKH, Carrete J, Verstraete MJ (2018) BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput Phys Commun 231:140–145. https://doi.org/10.1016/j.cpc.2018.05.010

    Article  CAS  Google Scholar 

  36. Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80(1):72–80. https://doi.org/10.1103/PhysRev.80.72

    Article  CAS  Google Scholar 

  37. Long M, Tang L, Wang D, Li Y, Shuai Z (2011) Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. ACS Nano 5(4):2593–2600. https://doi.org/10.1021/nn102472s

    Article  CAS  Google Scholar 

  38. Hong AJ, Li L, He R, Gong JJ, Yan ZB, Wang KF, Liu JM, Ren ZF (2016) Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds. Sci Rep 6(1):22778. https://doi.org/10.1038/srep22778

    Article  CAS  Google Scholar 

  39. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  40. Dubi Y, Di Ventra M (2011) Colloquium: heat flow and thermoelectricity in atomic and molecular junctions. Rev Mod Phys 83(1):131–155. https://doi.org/10.1103/RevModPhys.83.131

    Article  CAS  Google Scholar 

  41. Grattan-Guinness I (2005) Joseph Fourier, Théorie analytique de la chaleur (1822). In: Grattan-Guinness I, Cooke R, Corry L, Crépel P, Guicciardini N (eds) Landmark Writings in Western Mathematics 1640–1940. Elsevier Science, Amsterdam, pp 354–365. https://doi.org/10.1016/B978-044450871-3/50107-8

    Chapter  Google Scholar 

  42. Momma K, Izumi F (2011) VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276. https://doi.org/10.1107/s0021889811038970

    Article  CAS  Google Scholar 

  43. Berson JA (2008) Molecules with very weak bonds: the edge of covalency. Philos Sci 75(5):947–957. https://doi.org/10.1086/594537

    Article  Google Scholar 

  44. Ge Y, Liu R, Shuai Z (2021) Abnormal Seebeck effect in doped conducting polymers. Appl Phys Lett 118(12):123301. https://doi.org/10.1063/5.0043863

    Article  CAS  Google Scholar 

  45. Gao Y, He Y, Zhu L (2010) Impact of grain size on the Seebeck coefficient of bulk polycrystalline thermoelectric materials. Chin Sci Bull 55(1):16–21. https://doi.org/10.1007/s11434-009-0705-2

    Article  Google Scholar 

  46. Wang ZL, Tang DW, Li XB, Zheng XH, Zhang WG, Zheng LX, Zhu YT, Jin AZ, Yang HF, Gu CZ (2007) Length-dependent thermal conductivity of an individual single-wall carbon nanotube. Appl Phys Lett 91(12):123119. https://doi.org/10.1063/1.2779850

    Article  CAS  Google Scholar 

  47. Pop E, Mann D, Cao J, Wang Q, Goodson K, Dai H (2005) Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys Rev Lett 95(15):155505. https://doi.org/10.1103/PhysRevLett.95.155505

    Article  CAS  Google Scholar 

  48. Shelly RA, Toprak K, Bayazitoglu Y (2010) Nose-Hoover thermostat length effect on thermal conductivity of single wall carbon nanotubes. Int J Heat Mass Transf 53(25–26):5884–5887. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.054

    Article  CAS  Google Scholar 

  49. Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100. https://doi.org/10.1021/nl052145f

    Article  CAS  Google Scholar 

  50. Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87(21):215502. https://doi.org/10.1103/PhysRevLett.87.215502

    Article  CAS  Google Scholar 

  51. Wang J, Wang J-S (2006) Carbon nanotube thermal transport: ballistic to diffusive. Appl Phys Lett 88(11):111909. https://doi.org/10.1063/1.2185727

    Article  CAS  Google Scholar 

  52. Cao JX, Yan XH, Xiao Y, Ding JW (2004) Thermal conductivity of zigzag single-walled carbon nanotubes: role of the umklapp process. Phys Rev B 69(7):073407. https://doi.org/10.1103/PhysRevB.69.073407

    Article  CAS  Google Scholar 

  53. Goldsmid HJ (2010) Introduction to thermoelectricity. Springer, Berlin

    Book  Google Scholar 

  54. Shahi P, Singh DJ, Sun JP, Zhao LX, Chen GF, Lv YY, Li J, Yan JQ, Mandrus DG, Cheng JG (2018) Bipolar conduction as the possible origin of the electronic transition in pentatellurides: metallic vs semiconducting behavior. Phys Rev X 8(2):021055. https://doi.org/10.1103/PhysRevX.8.021055

    Article  CAS  Google Scholar 

  55. Yoshino H, Murata K (2015) Significant enhancement of electronic thermal conductivity of two-dimensional zero-gap systems by bipolar-diffusion effect. J Phys Soc Jpn 84(2):024601. https://doi.org/10.7566/jpsj.84.024601

    Article  Google Scholar 

Download references

Funding

This study was funded by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China (Nos. 51888103, 52076080, 51606192, and 51720105007) and the CAS Pioneer Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Contributions

M.Y., X.M.Y., B.W., and H.Z. supervised the project. X.Z. and M.Y. conceived the idea. X.Z., M.Y., Z.M.W., B.C.H., and H.C. performed theoretical calculations. All listed authors agree to all manuscript contents, the author list and its order and the author contribution statements.

Corresponding authors

Correspondence to Xueming Yang, Bin Wang or Hang Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xu Zhu and Ming Yang equally contributed to this study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Yang, M., Wang, Z. et al. Remarkable thermoelectric performance of carbon-based schwarzites. Adv Compos Hybrid Mater 6, 11 (2023). https://doi.org/10.1007/s42114-022-00595-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00595-z

Keywords

Navigation