Skip to main content
Log in

Effective mechanical properties of injection-molded short fiber reinforced PEEK composites using periodic homogenization

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Injection-molded short fiber composites are strongly anisotropic through the thickness of parts, and an accurate prediction of the effective mechanical properties remains an incredibly challenging task. This paper deals with a methodology for the calculation of elasto-plastic behaviors of short fiber reinforced composites. The micro-computed tomography (μCT) is utilized at first to obtain the fiber orientation distribution in a material sample, and then the five-layer structure is displayed and analyzed. Secondly, the numerical modeling of representative volume elements (RVEs) with specified fiber orientations is proposed based on the laminate structure. Furthermore, finite element homogenization with the periodic boundary condition is employed to analyze the relations of the elasto-plastic behaviors of RVE with five layers: the skin layers, shell zones, and core region. Based on the experimental results, the proposed multi-scale modeling method was found to accurately predict the effective elasto-plastic behaviors of the injection-molded short fiber composites.

Graphical abstract

The numerical implementation of finite element homogenization with the periodic boundary condition was successfully conducted to study the effective mechanical properties of short fiber reinforced composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Babu KP, Mohite PM, Upadhyay CS (2018) Development of an RVE and its stiffness predictions based on mathematical homogenization theory for short fibre composites. Int J Solids Struct 130–131:80–104

    Article  Google Scholar 

  2. Liu H, Zeng D, Li Y, Jiang L (2016) Development of RVE-embedded solid elements model for predicting effective elastic constants of discontinuous fiber reinforced composites. Mech Mater 93:109–123

    Article  Google Scholar 

  3. Ayadi A, Nouri H, Guessasma S, Roger F (2016) Determination of orthotropic properties of glass fibre reinforced thermoplastics using X-ray tomography and multiscale finite element computation. Compos Struct 136:635–649

    Article  Google Scholar 

  4. Mehdipour H, Camanho PP, Belingardi G (2019) Elasto-plastic constitutive equations for short fiber reinforced polymers. Compos Pt B Eng 165:199–214

    Article  CAS  Google Scholar 

  5. Jördens C, Scheller M, Wietzke S, Romeike D, Jansen C, Zentgraf T et al (2010) Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics. Compos Sci Technol 70(3):472–477

    Article  Google Scholar 

  6. Zhiguo M, Xianzhang S, Yulong H, Jun Z, Ming H, Yongzhi L et al (2022) Co-simulation technology of mold flow and structure for injection molding reinforced thermoplastic composite (FRT) parts. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00407-w

    Article  Google Scholar 

  7. Sabiston T, Inal K, Lee-Sullivan P (2020) Application of artificial neural networks to predict fibre orientation in long fibre compression moulded composite materials. Compos Sci Technol 190:108034

    Article  CAS  Google Scholar 

  8. Naili C, Doghri I, Kanit T, Sukiman MS, Aissa-Berraies A, Imad A (2020) Short fiber reinforced composites: unbiased full-field evaluation of various homogenization methods in elasticity. Compos Sci Technol 187:107942

    Article  CAS  Google Scholar 

  9. Hessman PA, Riedel T, Welschinger F, Hornberger K, Böhlke T (2019) Microstructural analysis of short glass fiber reinforced thermoplastics based on x-ray micro-computed tomography. Compos Sci Technol 183:107752

    Article  Google Scholar 

  10. Dean A, Grbic N, Rolfes R, Behrens B (2019) Macro-mechanical modeling and experimental validation of anisotropic, pressure- and temperature-dependent behavior of short fiber composites. Compos Struct 211:630–643

    Article  Google Scholar 

  11. Bernasconi A, Cosmi F, Dreossi D (2008) Local anisotropy analysis of injection moulded fibre reinforced polymer composites. Compos Sci Technol 68(12):2574–2581

    Article  CAS  Google Scholar 

  12. Hartl AM, Jerabek M, Freudenthaler P, Lang RW (2015) Orientation-dependent compression/tension asymmetry of short glass fiber reinforced polypropylene: deformation, damage and failure. Compos A Appl Sci Manuf 79:14–22

    Article  CAS  Google Scholar 

  13. Mortazavian S, Fatemi A (2015) Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Compos Pt B Eng 72:116–129

    Article  CAS  Google Scholar 

  14. Karsli NG, Aytac A (2013) Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites. Compos Pt B Eng 51:270–275

    Article  CAS  Google Scholar 

  15. Lionetto F, Montagna F, Natali D, De Pascalis F, Nacucchi M, Caretto F et al (2021) Correlation between elastic properties and morphology in short fiber composites by X-ray computed micro-tomography. Compos A Appl Sci Manuf 140:106169

    Article  CAS  Google Scholar 

  16. Li F, Liu Y, Qu C-B, Xiao H-M, Hua Y, Sui G-X et al (2015) Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating. Polymer 59:155–165

    Article  CAS  Google Scholar 

  17. Kumar P, Srinivas J (2014) Numerical evaluation of effective elastic properties of CNT-reinforced polymers for interphase effects. Comput Mater Sci 88:139–144

    Article  CAS  Google Scholar 

  18. Greco A (2020) FEM analysis of the elastic behavior of composites and nanocomposites with arbitrarily oriented reinforcements. Compos Struct 241:112095

    Article  Google Scholar 

  19. Fu S-Y, Lauke B, Mäder E, Yue C-Y, Hu X (2000) Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Compos Pt A 31:1117–1125

    Article  Google Scholar 

  20. Bernasconi A, Cosmi F (2011) Analysis of the dependence of the tensile behaviour of a short fibre reinforced polyamide upon fibre volume fraction, length and orientation. Procedia Eng 10:2129–2133

    Article  CAS  Google Scholar 

  21. Kalus J, Jørgensen JK (2014) Measuring deformation and mechanical properties of weld lines in short fibre reinforced thermoplastics using digital image correlation. Polym Test 36:44–53

    Article  CAS  Google Scholar 

  22. Du S-S, Li F, Xiao H-M, Li Y-Q, Hu N, Fu S-Y (2016) Tensile and flexural properties of graphene oxide coated-short glass fiber reinforced polyethersulfone composites. Compos Pt B Eng 99:407–415

    Article  CAS  Google Scholar 

  23. Lee J-M, Moon J-S, Shim D, Choi B-H (2019) Effect of glass fiber distributions on the mechanical and fracture behaviors of injection-molded glass fiber-filled polypropylene with 2-hole tension specimens. Compos Sci Technol 170:190–199

    Article  CAS  Google Scholar 

  24. Karamov R, Martulli LM, Kerschbaum M, Sergeichev I, Swolfs Y, Lomov SV (2020) Micro-CT based structure tensor analysis of fibre orientation in random fibre composites versus high-fidelity fibre identification methods. Compos Struct 235:111818

    Article  Google Scholar 

  25. Nguyen Thi TB, Morioka M, Yokoyama A, Hamanaka S, Yamashita K, Nonomura C (2015) Measurement of fiber orientation distribution in injection-molded short-glass-fiber composites using X-ray computed tomography. J Mater Process Technol 219:1–9

    Article  CAS  Google Scholar 

  26. Tian W, Qi L, Chao X, Ju L, Li S, Liang J (2018) Experimental and multi-scale numerical evaluations for effective mechanical properties of 2-D Cf/Mg composites. Compos Struct 189:1–8

    Article  Google Scholar 

  27. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A Mat 241(1226):376–396

    Article  Google Scholar 

  28. Hill R (1965) A self-consistent mechanics of composite materials. Pergamon 13(4):213–222

    Google Scholar 

  29. Christensen EM, Lo K (1979) Solutions for effective shear properties in three phase sphere and cylinder models. Pergamon 27(4):315–330

    CAS  Google Scholar 

  30. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  31. Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784

    Article  CAS  Google Scholar 

  32. Gusev A, Heggli M, Lusti HR, Hine PJ (2002) Orientation averaging for stiffness and thermal expansion of short fiber composites. Adv Eng Mater 4(12):931–933

    Article  Google Scholar 

  33. Mirkhalaf SM, Eggels EH, van Beurden TJH, Larsson F, Fagerström M (2020) A finite element based orientation averaging method for predicting elastic properties of short fiber reinforced composites. Compos Pt B Eng 202:108388

    Article  CAS  Google Scholar 

  34. Han K-H, Im Y-T (1999) Modified hybrid closure approximation for prediction of flow-induced fiber orientation. J Rheol 43(3):569–589

    Article  CAS  Google Scholar 

  35. Cintra JS, Tucker CL (1995) Orthotropic closure approximations for flow-induced fiber orientation. J Rheol 39(6):1095–1122

    Article  CAS  Google Scholar 

  36. Chung DH, Kwon TH (2002) Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation. J Rheol 46(1):169–194

    Article  CAS  Google Scholar 

  37. Pan Y, Iorga L, Pelegri AA (2008) Numerical generation of a random chopped fiber composite RVE and its elastic properties. Compos Sci Technol 68(13):2792–2798

    Article  CAS  Google Scholar 

  38. Iorga L, Pan Y, Pelegri A (2008) Numerical characterization of material elastic properties for random fiber composites. J Mech Mater Struct 3(7):1279–1298

    Article  Google Scholar 

  39. Hine PJ, Lusti HR, Gusev AA (2004) On the possibility of reduced variable predictions for the thermoelastic properties of short fibre composites. Compos Sci Technol 64(7–8):1081–1088

    Article  CAS  Google Scholar 

  40. Pan Y, Iorga L, Pelegri AA (2008) Analysis of 3D random chopped fiber reinforced composites using FEM and random sequential adsorption. Comput Mater Sci 43(3):450–461

    Article  CAS  Google Scholar 

  41. Nguyen VD, Béchet E, Geuzaine C, Noels L (2012) Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Comput Mater Sci 55:390–406

    Article  Google Scholar 

  42. Kari S, Berger H, Gabbert U (2007) Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites. Comput Mater Sci 39(1):198–204

    Article  CAS  Google Scholar 

  43. Zhong Y, Liu P, Pei Q, Sorkin V, Louis Commillus A, Su Z et al (2020) Elastic properties of injection molded short glass fiber reinforced thermoplastic composites. Compos Struct 254:112850

    Article  Google Scholar 

  44. Tian W, Qi L, Chao X, Liang J, Fu M (2019) Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures. Compos Pt B Eng 162:1–10

    Article  Google Scholar 

  45. Doghri I, Tinel L (2005) Micromechanical modeling and computation of elasto-plastic materials reinforced with distributed-orientation fibers. Int J Plast 21(10):1919–1940

    Article  Google Scholar 

  46. Tian W, Qi L, Su C, Liang J, Zhou J (2016) Numerical evaluation on mechanical properties of short-fiber-reinforced metal matrix composites: two-step mean-field homogenization procedure. Compos Struct 139:96–103

    Article  CAS  Google Scholar 

  47. Pietrogrande R, Carraro PA, De Monte M, Quaresimin M (2018) A novel pseudo-grain approach for the estimation of the elastic stress distributions within the matrix of short fiber-reinforced polymers. Compos Pt B Eng 150:115–123

    Article  CAS  Google Scholar 

  48. Kammoun S, Doghri I, Brassart L, Delannay L (2015) Micromechanical modeling of the progressive failure in short glass–fiber reinforced thermoplastics – first pseudo-grain damage model. Compos A Appl Sci Manuf 73:166–175

    Article  CAS  Google Scholar 

  49. Huang H-B, Huang Z-M (2020) Micromechanical prediction of elastic-plastic behavior of a short fiber or particle reinforced composite. Compos A Appl Sci Manuf 134:105889

    Article  CAS  Google Scholar 

  50. Tian W, Chao X, Fu MW, Qi L (2021) An advanced method for efficiently generating composite RVEs with specified particle orientation. Compos Sci Technol 205:108647

    Article  CAS  Google Scholar 

  51. Zhao J, Su D-X, Yi J-m, Cheng G, Turng L-S, Osswald T (2020) The effect of micromechanics models on mechanical property predictions for short fiber composites. Compos Struct 244:112229

    Article  Google Scholar 

  52. Lutz W, Herrmann J, Kockelmann M, Hosseini HS, Jäckel A, Schmauder S et al (2009) Damage development in short-fiber reinforced injection molded composites. Comput Mater Sci 45(3):698–708

    Article  CAS  Google Scholar 

  53. Ansari F, Granda LA, Joffe R, Berglund LA, Vilaseca F (2017) Experimental evaluation of anisotropy in injection molded polypropylene/wood fiber biocomposites. Compos A Appl Sci Manuf 96:147–154

    Article  CAS  Google Scholar 

  54. Rolland H, Saintier N, Robert G (2016) Damage mechanisms in short glass fibre reinforced thermoplastic during in situ microtomography tensile tests. Compos Pt B Eng 90:365–377

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhao, Lih-Sheng Turng or Gengdong Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Guo, C., Zuo, X. et al. Effective mechanical properties of injection-molded short fiber reinforced PEEK composites using periodic homogenization. Adv Compos Hybrid Mater 5, 2964–2976 (2022). https://doi.org/10.1007/s42114-022-00518-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00518-y

Keywords

Navigation