Skip to main content
Log in

Improved mechanical and EMI shielding properties of PLA/PCL composites by controlling distribution of PIL-modified CNTs

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The functionalization and distribution of conductive fillers and the interfacial compatibilization of polymer blends is the basic scientific problem of electromagnetic interference (EMI) shielding composites. Polylactic acid/polycaprolactone (PLA/PCL)-based nanocomposites containing polymerizable ionic liquid copolymer of poly(methoxy poly(ethylene glycol) monomethacrylate-co-1-vinyl-3-ethylimidazolium bromide) (PILs) and multi-walled carbon nanotubes (CNTs) were fabricated by the melt blending. The high affinity of MEPGMA segments of PILs for both phases and the interaction between the imidazole group of PILs and CNTs improved the dispersion and compatibility of CNTs in the matrix. PILs could expand to the interfacial layers as compatibilizers because of the high affinity of MEPGMA groups for polymer phases. The migration of CNTs from PLA to PCL phase was realized by the kinetic control and PIL-modified CNTs were selectively distributed at the co-continuous PLA/PCL interface and PCL phase of the PLA/PCL/4PIL/8CNT-6 m composite with blending time of 6 min. The selective localization of CNTs at interphase significantly can form effective conductive networks at the interface for PLA/PCL/4PIL/8CNT-6 m composite, which increase the electrical conductivity of the composite. The EMI shielding efficiency of the PLA/PCL/4PIL/8CNT-6 m composites, which can reflect and absorb microwaves with multiple times, reaches up to the maximum value 41 dB.

Graphical abstract

The selective localization of CNTs at interphase forms effective conductive network. EMI SE of the PLA/PCL/4PIL/8CNT-6 m composite displays 41 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Musunuri B, Shetty S, Shetty DK, Vanahalli MK, Pradhan A, Naik N et al (2021) Acute-on-chronic liver failure mortality prediction using an artificial neural network. Eng Sci 15:187–196

    Google Scholar 

  2. Zhang Y, Ruan K, Gu J (2021) Flexible sandwich-Structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17:2101951

    Article  CAS  Google Scholar 

  3. Sun X, Liu X, Shen X, Wu Y, Wang Z, Kim JK (2016) Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Compos A 85:199–206

    Article  CAS  Google Scholar 

  4. Saib A, Bednarz L, Daussin R, Bailly C, Lou X, Thomassin JM et al (2006) Carbon nanotube composites for broadband microwave absorbing materials. IEEE Trans Microwave Theory Tech 54:2745–2754

    Article  CAS  Google Scholar 

  5. Wu N, Du W, Hu Q, Vupputuri S, Jiang Q (2021) Recent development in fabrication of co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng Sci 13:11–23

    CAS  Google Scholar 

  6. Cao MS, Wang XX, Cao WQ, Yuan J (2015) Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J Mater Chem C 3:6589–6599

    Article  CAS  Google Scholar 

  7. Fang HG, Wang SL, Ye WJ, Chen X, Wang XH, Xu P et al (2019) Simultaneous improvement of mechanical properties and electromagnetic interference shielding performance in eco-friendly polylactide composites via reactive blending and MWCNTs induced morphological optimization. Composites Part B 178:107452

  8. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R et al (2022) Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72

    Article  Google Scholar 

  9. Jiang D, Murugadoss V, Wang Y, Lin J, Ding T, Wang Z et al (2019) Electromagnetic interference shielding polymers and nanocomposites—a review. Polym Rev 59:280–337

    Article  CAS  Google Scholar 

  10. Liu HG, Wu SQ, You CY, Tian N, Li Y, Chopra N (2021) Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon 172:569–596

    Article  CAS  Google Scholar 

  11. Ameli A, Nofar M, Wang S, Park CB (2014) Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding. ACS Appl Mater Interfaces 6:11091–11100

    Article  CAS  Google Scholar 

  12. Zeng SP, Li XP, Li MJ, Zheng JJ, E SJ, Yang WJ et al (2019) Flexible PVDF/CNTs/Ni@ CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment. Carbon 155:34–43

    Article  CAS  Google Scholar 

  13. Gao Q, Pan Y, Zheng G, Liu C, Shen C, Liu X (2021) Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater 4:274–285

    Article  CAS  Google Scholar 

  14. Song P, Liu B, Liang C, Ruan K, Qiu H, Ma Z et al (2021) Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett 13:1–17

    Article  CAS  Google Scholar 

  15. Al-Saleh MH, Gelves GA, Sundararaj U (2011) Copper nanowire/polystyrene nanocomposites: lower percolation threshold and higher EMI Shielding. Compos A 42:92–97

    Article  CAS  Google Scholar 

  16. Mondal S, Das P, Ganguly S, Ravindren R, Remanan S, Bhawal P et al (2018) Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lightweight carbon nanotube based polymer nanocomposites. Compos A 107:447–460

    Article  CAS  Google Scholar 

  17. Mondal S, Ghosh S, Ganguly S, Das P, Ravindren R, Sit S et al (2017) Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance. Mater Res Express 4:105039

  18. Kuang TR, Chang LQ, Chen F, Sheng Y, Fu DJ, Peng XF (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313

    Article  CAS  Google Scholar 

  19. Al-Saleh MH, Sundararaj U (2008) Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black. Macromol Mater Eng 293:621–630

    Article  CAS  Google Scholar 

  20. Wang H, Zheng K, Zhang X, Du TX, Xiao C, Ding X et al (2016) Segregated poly (vinylidene fluoride)/MWCNTs composites for high-performance electromagnetic interference shielding. Compos A 90:606–613

    Article  CAS  Google Scholar 

  21. Chen Z, Xu C, Ma C, Ren W, Cheng HM (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25:1296–1300

    Article  CAS  Google Scholar 

  22. Liu Z, Bai G, Huang Y, Ma Y, Du F, Li F et al (2007) Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45:821–827

    Article  CAS  Google Scholar 

  23. Singh BP, Prasanta CV, Saini P, Pande S, Singh VN et al (2013) Enhanced microwave shielding and mechanical properties of high loading MWCNT–epoxy composites. J Nanopart Res 15:1554

    Article  CAS  Google Scholar 

  24. Mahmoodi M, Arjmand M, Sundararaj U, Park S (2012) The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites. Carbon 50:1455–1464

    Article  CAS  Google Scholar 

  25. Shi YD, Li J, Tan YJ, Chen YF, Wang M (2019) Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites. Compos Sci Technol 170:70–76

    Article  CAS  Google Scholar 

  26. Luo F, Liu D, Cao T, Cheng H, Kuang J, Deng Y et al (2021) Study on broadband microwave absorbing performance of gradient porous structure. Adv Compos Hybrid Mater 4:591–601

    Article  CAS  Google Scholar 

  27. Dong Y, Zhu X, Pan F, Deng B, Liu Z, Zhang X et al (2021) Mace like carbon fiber/ZnO nanorod composite derived from Typha orientalis for lightweight and high efficient electromagnetic wave absorber. Adv Compos Hybrid Mater 1–13

  28. Yan X, Liu J, Khan MA, Sheriff S, Vupputuri S, Das R et al (2020) Efficient solvent-free microwave irradiation synthesis of highly conductive polypropylene nanocomposites with lowly loaded carbon nanotubes. ES Mater Manuf 9:21–33

    CAS  Google Scholar 

  29. Guo J, Li X, Liu H, Young DP, Song G, Song K et al (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4:51–64

    Article  CAS  Google Scholar 

  30. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Poly Sci 33:820–852

    Article  CAS  Google Scholar 

  31. Deng S, Yao J, Bai H, Xiu H, Zhang Q, Fu Q (2021) A generalizable strategy toward highly tough and heat-resistant stereocomplex-type polylactide/elastomer blends with substantially enhanced melt processability. Polymer 224:123736

  32. Cui CH, Yan DX, Pang H, Xu X, Jia LC, Li ZM (2016) Formation of a segregated electrically conductive network structure in a low-melt-viscosity polymer for highly efficient electromagnetic. ACS Sustain Chem Eng 4:4137–4145

    Article  CAS  Google Scholar 

  33. Zhang K, Li GH, Feng LM, Wang N, Guo J, Sun K et al (2017) Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J Mater Chem C 5:9359–9369

    Article  CAS  Google Scholar 

  34. Tsuji H, Horikawa G, Itsuno S (2007) Melt-processed biodegradable polyester blends of poly(L-lactic acid) and poly(ε-caprolactone): effects of processing conditions on biodegradation. J Appl Polym Sci 104:831–841

    Article  CAS  Google Scholar 

  35. Lopez-Rodriguez N, Lopez-Arraiza A, Meaurio E, Sarasua JR (2006) Crystallization, morphology, and mechanical behavior of polylactide/polycaprolactone blends. Polym Eng Sci 46:1299–1308

    Article  CAS  Google Scholar 

  36. Herrera D, Zamora JC, Bello A, Grimau M, Laredo E, Muller AJ et al (2005) Miscibility and crystallization inpolycarbonate/poly(ε-caprolactone) blends: application of the self-concentration model. Macromolecules 38:5109–5117

    Article  CAS  Google Scholar 

  37. Zhang K, Yu HO, Shi YD, Chen YF, Zeng JB, Guo J et al (2017) Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(L-lactide)/poly(ɛ-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. J Mater Chem C 5:2807–2817

    Article  CAS  Google Scholar 

  38. Tan YJ, Li J, Tang XH, Yue TN, Wang M (2020) Effect of phase morphology and distribution of multi-walled carbon nanotubes on microwave shielding of poly(L-lactide)/poly(ε-caprolactone) composites. Compos Part A 137:106008

  39. Laredo E, Grimau M, Bello A, Wu DF, Zhang YS, Lin DP (2010) AC conductivity of selectively located carbon nanotubes in poly(ε-caprolactone)/polylactide blend nanocomposites. Biomacromol 11:1339–1347

    Article  CAS  Google Scholar 

  40. Cheng H, Lu Z, Gao Q, Zuo Y, Liu X, Guo Z et al (2021) PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci

  41. Wu D, Zhang Y, Zhang M, Yu W (2009) Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromol 10:417–424

    Article  CAS  Google Scholar 

  42. Huang J, Mao C, Zhu Y, Jiang W, Yang X (2014) Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon 73:267–274

    Article  CAS  Google Scholar 

  43. Singh MP, Singh RK, Chandra S (2014) Ionic liquids confined in porous matrices: physicochemical properties and applications. Prog Mater Sci 64:73–120

    Article  CAS  Google Scholar 

  44. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  Google Scholar 

  45. Ju Y, Lv R, Wang B, Na B, Liu H, Deng H (2016) Remarkable modulus enhancement of polylactide ion gels via network formation induced by a nucleating agent. Polymer 85:61–66

    Article  CAS  Google Scholar 

  46. Park K, Ha JU, Xanthos M (2010) Ionic liquids as plasticizers/lubricants for polylactic acid. Polym Eng Sci 50:1105–1110

    Article  CAS  Google Scholar 

  47. Xu P, Gui HG, Ding YS (2013) Effect of ionic liquid on chain segment motion and charge detrapping in poly(l-lactide)/ionic liquid composites. Ionics 19:1579–1585

    Article  CAS  Google Scholar 

  48. Wang P, Xu P, Wei H, Fang H, Ding Y (2018) Effect of block copolymer containing ionic liquid moiety on interfacial polarization in PLA/PCL blends. J Appl Polym Sci 135:46161

    Article  CAS  Google Scholar 

  49. Huang D, Ding Y, Jiang H, Sun S, Ma Z, Zhang K et al (2019) Functionalized elastomeric ionomers used as effective toughening agents for poly (lactic acid): enhancement in interfacial adhesion and mechanical performance. ACS Sustain Chem Eng 8:573–585

    Article  CAS  Google Scholar 

  50. Saxena AP, Deepa M, Joshi AG, Bhandari S, Srivastava AK (2011) Poly(3,4-ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures: improved conduction and electrochromism. ACS Appl Mater Interface 3:1115–1126

    Article  CAS  Google Scholar 

  51. Ye YS, Wang H, Bi SG, Xue Y, Xue ZG, Liao YG et al (2015) Enhanced ion transport in polymer-ionic liquid electrolytes containing ionic liquid functionalized nanostructured carbon materials. Carbon 83:86–97

    Article  CAS  Google Scholar 

  52. Sang G, Xu P, Yan T, Murugadoss V, Naik N, Ding Y et al (2021) Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett 153:13

    Google Scholar 

  53. Pereira ECL, Silva MECF, Pontes K, Soares BG (2019) Influence of protonic ionic liquid on the dispersion of carbon nanotube in PLA/EVA blends and blend compatibilization. Front Magn Mater 6:234

    Article  Google Scholar 

  54. Soares BG, Cordeiro E, Maia J, Pereira ECL, Silva AA (2020) The effect of the noncovalent functionalization of CNT by ionic liquid on electrical conductivity and electromagnetic interference shielding effectiveness of semi-biodegradable polypropylene/poly(lactic acid) composites. Polym Compos 41:82–93

    Article  CAS  Google Scholar 

  55. Wu D, Zhang J, Zhang M, Zhou W, Lin D (2011) The co-continuous morphology of biocompatible ethylene-vinyl acetate copolymers/poly(ε-caprolactone) blend: effect of viscosity ratio and vinyl acetate content. Colloid Polym Sci 289:1683–1694

    Article  CAS  Google Scholar 

  56. Wang P, Zhou Y, Xu P, Ding Y (2019) Effect of P[MPEGMA-IL] on morphological evolution and conductivity behavior of PLA/PCL blends. Ionics 25:3189–3196

    Article  CAS  Google Scholar 

  57. Wang P, Zhou Y, Hu X, Wang F, Chen J, Xu P et al (2020) Improved mechanical and dielectric properties of PLA/EMA-GMA nanocomposites based on ionic liquids and MWCNTs. Compos Sci Technol 200:108347

  58. Zheng L, Li Y, Weng Y, Zhu J, Zeng J (2019) Localization control of carbon nanotubes in immiscible polymer blends through dynamic vulcanization. Compos Part B 167:683–689

    Article  CAS  Google Scholar 

  59. Peng R, Wang Y, Tang W, Yang Y, Xie X (2013) Progress in imidazolium ionic liquids assisted fabrication of carbon nanotube and graphene polymer composites. Polymers 5:847–872

    Article  CAS  Google Scholar 

  60. Lu X, Zhu D, Li X, Li M, Chen Q, Qing Y (2021) Gelatin derived N doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Adv Compos Hybrid Mater 1–11

  61. Li Y, Qing Y, Li W, Zong M, Luo F (2021) Novel Magnéli Ti4O7/Ni/poly (vinylidene fluoride) hybrids for high-performance electromagnetic wave absorption. Adv Compos Hybrid Mater 1–10

  62. Guo J, Chen Z, Abdul W, Kong J, Khan MA, Young DP et al (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Mater 4:534–542

    Article  CAS  Google Scholar 

  63. Dil EJ, Arjmand M, Navas IO, Sundararaj U, Favis BD (2020) Interface bridging of multiwalled carbon nanotubes in polylactic acid/poly(butylene adipate-co-terephthalate): morphology, rheology, and electrical conductivity. Macromolecules 53:10,267–10,277

  64. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W et al (2021) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00378-y

    Article  Google Scholar 

  65. Jin X, Wang J, Dai L, Liu X, Li L, Yang Y et al (2020) Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem Eng J 380:122475

  66. Liang C, Du Y, Wang Y, Ma A, Huang S, Ma Z (2021) Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv Compos Hybrid Mater 1–10

  67. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285

    Article  CAS  Google Scholar 

  68. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi Z et al (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4:1226–1238

    Article  CAS  Google Scholar 

  69. Hl-Saleh AM, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746

    Article  CAS  Google Scholar 

  70. Lv L, Liu J, Liang C, Gu J, Liu H, Liu C et al (2018) An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Eng Sci 2:26–42

    Google Scholar 

  71. Wang L, Mai Z, Zhang Y, Chen L, Cao D, Gu J (2021) Polymer-based EMI shielding composites with 3D conductive networks: A minireview. SusMat 3:413–431

    Article  Google Scholar 

  72. Zhan Y, Oliviero M, Wang J, Sorrentino A, Buonocore GG, Sorrentino L et al (2019) Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks. Nanoscale 11:1011–1020

    Article  CAS  Google Scholar 

  73. Biswas S, Arief I, Panja SS, Bose S (2017) Absorption-dominated electromagnetic wave suppressor derived from ferrite-doped cross-linked graphene framework and conducting carbon. ACS Appl Mater Interfaces 9:3030–3039

    Article  CAS  Google Scholar 

  74. Zhang H, Heng Z, Zhou J, Shi Y, Chen Y, Zou H et al (2020) In-situ co-continuous conductive network induced by carbon nanotubes in epoxy composites with enhanced electromagnetic interference shielding performance. Chem Eng J 398:125559

  75. Al-Saleh MH (2016) Electrical, EMI shielding and tensile properties of PP/PE blends filled with GNP: CNT hybrid nanofiller. Synth Met 217:322–330

    Article  CAS  Google Scholar 

  76. Yang Y, Feng CP, Zhou YC, Zha XJ, Zha RJ, Ke K et al (2020) Achieving improved electromagnetic interference shielding performance and balanced mechanical properties in polyketone nanocomposites via a composite MWCNTs carrier. Compos Part A 136:105967

Download references

Funding

This research was supported by the National Natural Science Foundation of China (51603060) and the Industrial Guidance Fund Project of Bengbu City and Hefei University of Technology (JZ2020YDZJ0334).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei Xu or Yunsheng Ding.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4412 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Huang, B., Tang, R. et al. Improved mechanical and EMI shielding properties of PLA/PCL composites by controlling distribution of PIL-modified CNTs. Adv Compos Hybrid Mater 5, 991–1002 (2022). https://doi.org/10.1007/s42114-021-00406-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00406-x

Keywords

Navigation