Skip to main content

Advertisement

Log in

High performance and low floating fiber glass fiber-reinforced polypropylene composites realized by a facile coating method

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this work, we reported a kind of low floating fiber, high-performance composites which were prepared by means of mixing polypropylene and polybutylene-1/glass fiber masterbatch. The polybutylene-1/glass fiber masterbatch prepared by coating method made the surface of glass fiber covered by a thin resin, and the as-prepared composites displayed significantly higher shear thinning, higher interface bonding strength, and lower crystallization temperature. The results of scanning electron microscope and atomic force microscope showed that the coating process could effectively hinder the exposure of glass fiber. And, the composites at the PB-1 content of 10 wt% showed higher flexural strength (142.0 MPa) and tensile strength (69.6 MPa) than those for PP (41.3 MPa and 31.4 MPa, respectively). Moreover, the behavior of possible stacking arrangements inside the composites was inferred in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Roesner A, Scheik S, Olowinsky A, Gillner A, Reisgen U, Schleser M (2011) Laser assisted joining of plastic metal hybrids. Phys Procedia 12(1):370–377

    Article  Google Scholar 

  2. Han S-R, Park J-I, Cho J-R (2018) Development of plastic passenger air bag (PAB) housing for replacing the steel PAB housing and reducing the automobile weight. J Braz Soc Mech Sci Eng 40(4):224–233

    Article  Google Scholar 

  3. Suresh S, Senthil Kumar VS (2014) Experimental determination of the mechanical behavior of glass fiber reinforced polypropylene composites. Procedia Eng 97:632–641

    Article  Google Scholar 

  4. Gu S, Liu H, Li X, Mercier C, Li Y (2018) Interfacial designing of PP/GF composites by binary incorporation of MAH-g-PP and lithium bis(trifloromethanesulfonyl)imide: towards high strength composites with excellent antistatic performance. Compos Sci Technol 156:247–253

    Article  Google Scholar 

  5. Yoshida T, Ishiaku US, Okumura H, Baba H, Hamada H (2006) The effect of molecular weight on the interfacial properties of GF/PP injection molded composites. Compos A: Appl Sci Manuf 37(12):2300–2306

    Article  Google Scholar 

  6. Bagherpour E, Ebrahimi R, Qods F (2015) An analytical approach for simple shear extrusion process with a linear die profile. Mater Des 83:368–376

    Article  Google Scholar 

  7. Han K-H, Im Y-T (2002) Numerical simulation of three-dimensional fiber orientation in injection molding including fountain flow effect. Polym Compos 23(2):222–238

    Article  Google Scholar 

  8. Baert J, Puyvelde PV, Langouche F (2006) Flow-induced crystallization of PB-1: from the low shear rate region up to processing rates. Macromolecules 39(26):9215–9222

    Article  Google Scholar 

  9. Wang Z, Dong X, Liu G, Xing Q, Cavallo D et al (2018) Interfacial nucleation in iPP/PB-1 blends promotes the formation of polybutene-1 trigonal crystals. Polymer 138:396–406

    Article  Google Scholar 

  10. Yang Y-J, Huang C-C, Tao J (2016) Application of ultrasonic-assisted injection molding for improving melt flowing and floating fibers. J Polym Eng 36(2):119–128

    Article  Google Scholar 

  11. Li X-P, Zhao G-Q, Yang C (2014) Effect of mold temperature on motion behavior of short glass fibers in injection molding process. Int J Adv Manuf Technol 73(5–8):639–645

    Article  Google Scholar 

  12. Li S-C, Hu H-L, Zeng W (2012) Preparation and properties of PB-1/PP blends. Polym-Plast Technol Eng 51(7):744–749

    Article  Google Scholar 

  13. Ali FM, Maiz F (2018) Structural, optical and AFM characterization of PVA: La3+ polymer films. Physica B: Phys Condensed Matter 530:19–23

    Article  Google Scholar 

  14. Nzioka AM, Kim YJ (2018) Surface analysis of glass fibres using XPS and AFM: case study of glass fibres recovered from the glass fibre reinforced polymer using chemical recycling. J Phys Conf Ser 953:012012

    Article  Google Scholar 

  15. Ardakani F, Jahani Y, Morshedian J (2013) The role of PB-1 on the long chain branching of PP by electron beam irradiation in solid state and melt viscoelastic behavior. Radiat Phys Chem 87:64–70

    Article  Google Scholar 

  16. Hadinata C, Gabriel C, Ruellmann M, Kao N, Laun HM (2006) Shear-induced crystallization of PB-1 up to processing-relevant shear rates. Rheol Acta 45(5):539–546

    Article  Google Scholar 

  17. Li H, Cao Z, Wu D, Tao G, Zhong W et al (2016) Crystallisation, mechanical properties and rheological behaviour of PLA composites reinforced by surface modified microcrystalline cellulose. Mcromolecular Eng 45(4):181–187

    Google Scholar 

  18. Ajinjeru C, Kishore V, Lindahl J, Sudbury Z, Hassen AA et al (2018) The influence of dynamic rheological properties on carbon fiber-reinforced polyetherimide for large-scale extrusion-based additive manufacturing. Int J Adv Manuf Technol 99(1–4):411–418

    Article  Google Scholar 

  19. Angel R-U (2018) Viscoelasticity and microstructure of POSS-methyl methacrylate nanocomposites. Dynamics and entanglement dilution. Polymer 148:27–38

    Article  Google Scholar 

  20. Linhares FN, Gabriel CFS, Sousa AMFD, Nunes RCR (2018) Mechanical and rheological properties of nitrile rubber/fluoromica composites. Appl Clay Sci 162:165–174

    Article  Google Scholar 

  21. Lin G, Li D, Liu M, Zhang X, Zheng Y (2018) Rheology, non-isothermal crystallization behavior, mechanical and thermal properties of PMMA-modified carbon fiber-reinforced poly(ethylene terephthalate) composites. Polymers 10(6):594

    Article  Google Scholar 

  22. Hao Y, Yang H, Pan H, Ran X, Zhang H (2018) The effect of MBS on the heat resistant, mechanical properties, thermal behavior and rheological properties of PLA/EVOH blend. J Polym Res 25:171

    Article  Google Scholar 

  23. Goodarzi V, Jafari SH, Khonakdar HA, Seyfi J (2011) Morphology, rheology and dynamic mechanical properties of PP/EVA/clay nanocomposites. J Polym Res 18(6):1829–1839

    Article  Google Scholar 

  24. Jiang D, Liu L, Wu G, Zhang Q, Long J, Wu Z et al (2016) Mechanical properties of carbon fiber composites modified with graphene oxide in the interphase. Polym Compos 38(11):2425–2432

    Article  Google Scholar 

  25. Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos Sci Technol 66(9):1162–1173

    Article  Google Scholar 

  26. Jacob M, Francis B, Thomas S, Varughese KT (2006) Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites. Polym Compos 27(6):671–680

    Article  Google Scholar 

  27. Ragoubi M, George B, Molina S, Bienaiméb D, Merlin A et al (2012) Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix. Compos A: Appl Sci Manuf 43(4):675–685

    Article  Google Scholar 

  28. López Manchado MA, Blagiotti J, Torre L, Kenny JM (2000) Effects of reinforcing fibers on the crystallization of polypropylene. Polym Eng Sci 40(10):2194–2204

    Article  Google Scholar 

  29. Frihi D, Layachi A, Gherib S, Stoclet G, Masenelli Varlot K et al (2016) Crystallization of glass-fiber-reinforced polyamide 66 composites: influence of glass-fiber content and cooling rate. Compos Sci Technol 130:70–77

    Article  Google Scholar 

  30. Wang C, Bai S, Yue X, Long B, Choo-Smith LP (2016) Relationship between chemical composition, crystallinity, orientation and tensile strength of kenaf fiber. Fibers Polym 17(11):1757–1764

    Article  Google Scholar 

  31. Grüber B, Hufenbach W, Kroll L, Lepper M, Zhou B (2007) Stress concentration analysis of fibre-reinforced multilayered composites with pin-loaded holes. Compos Sci Technol 67(7–8):1439–1450

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjie Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2711 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Qu, M., Ning, Y. et al. High performance and low floating fiber glass fiber-reinforced polypropylene composites realized by a facile coating method. Adv Compos Hybrid Mater 2, 234–241 (2019). https://doi.org/10.1007/s42114-019-00080-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00080-0

Keywords

Navigation