Skip to main content
Log in

Basic principles and clinical potential of photon-counting detector CT

  • Review
  • Published:
Chinese Journal of Academic Radiology Aims and scope Submit manuscript

Abstract

Photon-counting detectors are a new technology for future computed tomography (CT) systems, with the potential to overcome major limitations of conventional CT detectors. They provide energy-resolved CT data at very high spatial resolution without electronic noise. This review article gives an overview of the basic principles of photon-counting detector CT, of potential benefits and limitations, and of the clinical experience gained so far in pre-clinical installations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Courtesy of National Institute of Health NIH, Bethesda, MD, USA

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

With permission from [14]

Fig. 12

With permission from [39]

Fig. 13

With permission from [65]

Fig. 14

Courtesy of R Symons, NIH, Bethesda, USA

Fig. 15

With permission from [26]

Fig. 16

Images courtesy of Clinical Innovation Center, Mayo Clinic Rochester, MN, USA

Fig. 17

With permission from [2]

Fig. 18

With permission  from [56]

Fig. 19

Courtesy of S. Leng, Mayo Clinic Rochester, MN, USA

Fig. 20

With permission  from [54]

Similar content being viewed by others

References

  1. Albrecht MH, De Cecco CN, Schoepf UJ, et al. Dual-energy CT of the heart current and future status. Eur J Radiol. 2018;105:110–8.

    Article  PubMed  Google Scholar 

  2. Bartlett DJ, Koo WC, Bartholmai BJ, et al. High-resolution chest computed tomography imaging of the lungs: impact of 1024 matrix reconstruction and photon-counting detector computed tomography. Invest Radiol. 2019;54(3):129–37.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bratke G, Hickethier T, Bar-Ness D, et al. Spectral photon-counting computed tomography for coronary stent imaging: evaluation of the potential clinical impact for the delineation of in-stent restenosis. Invest Radiol. 2019. https://doi.org/10.1097/rli.0000000000000610(epub ahead of print).

    Article  Google Scholar 

  4. Cormode DP, Si-Mohamed S, Bar-Ness D, et al. Multicolor spectral photon-counting computed tomography: in vivo dual contrast imaging with a high count rate scanner. Sci Rep. 2017;7(1):4784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Dangelmaier J, Bar-Ness D, Daerr H, et al. Experimental feasibility of spectral photon-counting computed tomography with two contrast agents for the detection of endoleaks following endovascular aortic repair. Eur Radiol. 2018;28(8):3318–25.

    Article  PubMed  PubMed Central  Google Scholar 

  6. De Santis D, Eid M, De Cecco CN, et al. Dual-energy computed tomography in cardiothoracic vascular imaging. Radiol Clin N Am. 2018;56(4):521–34.

    Article  PubMed  Google Scholar 

  7. Duan X, Wang J, Leng S, et al. Electronic noise in CT detectors: impact on image noise and artifacts. AJR Am J Roentgenol. 2013;201(4):W626–32.

    Article  PubMed  Google Scholar 

  8. Feuerlein S, Roessl E, Proksa R, et al. Multienergy photon-counting K-edge imaging: potential for improved luminal depiction in vascular imaging. Radiology. 2008;249(3):1010–6.

    Article  PubMed  Google Scholar 

  9. Ferrero A, Gutjahr R, Halaweish AF, Leng S, McCollough CH. Characterization of urinary stone composition by use of whole-body, photon-counting detector CT. Acad Radiol. 2018;25(10):1270–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Süß C, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16:256–68.

    Article  PubMed  Google Scholar 

  11. Flohr TG, Stierstorfer K, Süss C, Schmidt B, Primak AN, McCollough CH. Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT. Med Phys. 2007;34(5):1712–23.

    Article  CAS  PubMed  Google Scholar 

  12. Gassenmaier T, Petri N, Allmendinger T, et al. Next generation coronary CT angiography: in vitro evaluation of 27 coronary stents. Eur Radiol. 2014;24(11):2953–61.

    Article  PubMed  Google Scholar 

  13. Grant KL, Flohr TG, Krauss B, et al. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol. 2014;49(9):586–92.

    Article  PubMed  Google Scholar 

  14. Gutjahr R, Halaweish AF, Yu Z, et al. Human imaging with photon counting-based computed tomography at clinical dose levels: contrast-to-noise ratio and cadaver studies. Invest Radiol. 2016;51(7):421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gutjahr R, Polster C, Henning A, Kappler S, Leng S, McCollough CH, Sedlmair MU, Schmidt B, Krauss B, Flohr TG. Dual energy CT kidney stone differentiation in photon counting computed tomography. In: Proc SPIE int soc opt eng, vol 10132. 2017.

  16. Harrison AP, Xu Z, Pourmorteza A, Bluemke DA, Mollura DJ. A multichannel block-matching denoising algorithm for spectral photon-counting CT images. Med Phys. 2017;44(6):2447–52.

    Article  CAS  PubMed  Google Scholar 

  17. Johnson TRC, Krauß B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–7.

    Article  PubMed  Google Scholar 

  18. Kalender W, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport and continuous scanner rotation. Radiology. 1990;176:181–3.

    Article  CAS  PubMed  Google Scholar 

  19. Kappler S, Niederlöhner D, Stierstorfer K, Flohr T. Contrast-enhancement, image noise and dual-energy simulations for quantum-counting clinical CT. Proc SPIE Med Imaging Conf. 2010;7622:76223H.

    Google Scholar 

  20. Kappler S, Hannemann T, Kraft E, et al. First results from a hybrid prototype CT scanner for exploring benefits of quantum-counting in clinical CT. In: Medical imaging 2012: physics of medical imaging. San Diego: International Society for Optics and Photonics; 2012. p. 83130X.

  21. Kappler S, Henning A, Krauss B, et al. Multi-energy performance of a research prototype CT scanner with small-pixel counting detector. In: Medical imaging 2013: physics of medical imaging. Lake Buena Vista: International Society for Optics and Photonics; 2013. p. 86680O.

  22. Kappler S, Henning A, Kreisler B, et al. Photon counting CT at elevated X-ray tube currents: contrast stability, image noise and multi-energy performance. In: Medical imaging 2014: physics of medical imaging. San Diego: International Society for Optics and Photonics; 2014. p. 90331C.

  23. Kopp FA, Daerr H, Si-Mohamed S, et al. Evaluation of a pre-clinical photon-counting CT prototype for pulmonary imaging. Sci Rep. 2018;8(1):17386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U. Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol. 1999;31:110–24.

    Article  CAS  PubMed  Google Scholar 

  25. Leng S, Zhou W, Yu Z, et al. Spectral performance of a whole-body research photon counting detector CT: quantitative accuracy in derived image sets. Phys Med Biol. 2017;62(17):7216–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leng S, Rajendran K, Gong H, et al. 150-μm spatial resolution using photon-counting detector computed tomography technology: technical performance and first patient images. Invest Radiol. 2018;53(11):655–62.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Leng S, Bruesewitz M, Tao S, et al. Photon-counting detector CT: system design and clinical applications of an emerging technology. Radiographics. 2019;39(3):729–43.

    Article  PubMed  Google Scholar 

  28. Li Z, Leng S, Yu L, et al. An effective noise reduction method for multi-energy CT images that exploit spatio-spectral features. Med Phys. 2017;44(5):1610–23.

    Article  CAS  PubMed  Google Scholar 

  29. Lu GM, Zhao Y, Zhang LJ, Schoepf UJ. Dual-energy CT of the lung. AJR Am J Roentgenol. 2012;199(5 Suppl):S40–53.

    Article  PubMed  Google Scholar 

  30. Marcus RP, Fletcher JG, Ferrero A, et al. Detection and characterization of renal stones by using photon-counting-based CT. Radiology. 2018;289(2):436–42.

    Article  PubMed  Google Scholar 

  31. Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the abdomen. Radiology. 2014;271(2):327–42.

    Article  PubMed  Google Scholar 

  32. Martinez FJ, Chisholm A, Collard HR. The diagnosis of idiopathic pulmonary fibrosis: current and future approaches. Lancet Respir Med. 2017;5(1):61–71.

    Article  PubMed  Google Scholar 

  33. McCollough CH, Zink FE. Performance evaluation of a multi-slice CT system. Med Phys. 1999;26:2223–30.

    Article  CAS  PubMed  Google Scholar 

  34. Muenzel D, Bar-Ness D, Roessl E, et al. Spectral photon-counting CT: initial experience with dual-contrast agent K-edge colonography. Radiology. 2017;283(3):723–8.

    Article  PubMed  Google Scholar 

  35. Mori S, Obata T, Nakajima N, Ichihara N, Endo M. Volumetric perfusion CT using prototype 256-detector row CT scanner: preliminary study with healthy porcine model. AJNR Am J Neuroradiol. 2005;26(10):2536–41.

    PubMed  PubMed Central  Google Scholar 

  36. Odisio EG, Truong MT, Duran C, de Groot PM, Godoy MC. Role of dual-energy computed tomography in thoracic oncology. Radiol Clin N Am. 2018;56(4):535–48.

    Article  PubMed  Google Scholar 

  37. Onishi H, Hori M, Ota T, Nakamoto A, Osuga K, Tatsumi M, Fukui H, Tsukagoshi S, Uranishi A, Saito Y, Taniguchi A, Enchi Y, Sato K, Tomiyama N. Phantom study of in-stent restenosis at high-spatial-resolution CT. Radiology. 2018;289(1):255–60.

    Article  PubMed  Google Scholar 

  38. Pourmorteza A, Symons R, Sandfort V, et al. Abdominal imaging with contrast-enhanced photon-counting CT: first human experience. Radiology. 2016;279(1):239–45.

    Article  PubMed  Google Scholar 

  39. Pourmorteza A, Symons R, Reich DS, Bagheri M, Cork TE, Kappler S, Ulzheimer S, Bluemke DA. Photon-counting CT of the brain: in vivo human results and image-quality assessment. AJNR Am J Neuroradiol. 2017;38(12):2257–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pourmorteza A, Symons R, Henning A, Ulzheimer S, Bluemke DA. Dose efficiency of quarter-millimeter photon-counting computed tomography: first-in-human results. Invest Radiol. 2018;53(6):365–72.

    Article  PubMed  Google Scholar 

  41. Rajendran K, Tao S, Abdurakhimova D, Leng S, McCollough C. Ultra-high resolution photon-counting detector CT reconstruction using spectral prior image constrained compressed-sensing (UHR-SPICCS). Proc SPIE Int Soc Opt Eng. 2018. https://doi.org/10.1117/12.2294628.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rajiah P, Sundaram M, Subhas N. Dual-energy CT in musculoskeletal imaging: what is the role beyond gout? AJR Am J Roentgenol. 2019;213(3):493–505.

    Article  PubMed  Google Scholar 

  43. Rassouli N, Etesami M, Dhanantwari A, Rajiah P. Detector-based spectral CT with a novel dual-layer technology: principles and applications. Insights Imaging. 2017;8(6):589–98.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Riederer I, Bar-Ness D, Kimm MA. Liquid embolics agents in spectral X-ray photon-counting computed tomography using tantalum K-edge imaging. Sci Rep. 2019;9:5268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Riederer I, Si-Mohamed S, Ehn S, et al. Differentiation between blood and iodine in a bovine brain—initial experience with spectral photon-counting computed tomography (SPCCT). PLoS One. 2019;14(2):e0212679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schlomka JP, Roessl E, Dorscheid R, et al. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol. 2008;53(15):4031–47.

    Article  CAS  PubMed  Google Scholar 

  47. Shanbhag SM, Schuzer JL, Steveson C, Rollison S, Bronson KC, Stagliano MS, Rogalla P, Blum A, Prokop M, Chen MY. Prototype ultrahigh-resolution computed tomography for chest imaging: initial human experience. J Comput Assist Tomogr. 2019;43(5):805–10.

    Article  PubMed  Google Scholar 

  48. Siegel MJ, Ramirez-Giraldo JC. Dual-energy CT in children: imaging algorithms and clinical applications. Radiology. 2019;291(2):286–97.

    Article  PubMed  Google Scholar 

  49. Si-Mohamed S, Bar-Ness D, Sigovan M, et al. Multicolour imaging with spectral photon-counting CT: a phantom study. Eur Rad Exp. 2018;2:34.

    Article  Google Scholar 

  50. Si-Mohamed S, Tatard-Leitman V, Laugerette A, et al. Spectral photon-counting computed tomography (SPCCT): in vivo single-acquisition multi-phase liver imaging with a dual contrast agent protocol. Sci Rep. 2019;9(1):8458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Symons R, Cork T, Sahbaee P, et al. Low-dose lung cancer screening with photon-counting CT: a feasibility study. Phys Med Biol. 2017;62(1):202–13.

    Article  CAS  PubMed  Google Scholar 

  52. Symons R, Pourmorteza A, Sandfort V, et al. Feasibility of dose-reduced chest ct with photon-counting detectors: initial results in humans. Radiology. 2017;285(3):980–9.

    Article  PubMed  Google Scholar 

  53. Symons R, Cork TE, Lakshmanan MN, et al. Dual-contrast agent photon-counting computed tomography of the heart: initial experience. Int J Cardiovasc Imaging. 2017;33:1253–61.

    Article  PubMed  Google Scholar 

  54. Symons R, Krauss B, Sahbaee P, et al. Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: an in vivo study. Med Phys. 2017;44(10):5120–7.

    Article  PubMed  Google Scholar 

  55. Symons R, de Bruecker Y, Roosen J, et al. Quarter-millimeter spectral coronary stent imaging with photon-counting CT: initial experience. J Cardiovasc Comput Tomogr. 2018;12:509–15.

    Article  PubMed  Google Scholar 

  56. Symons R, Reich DS, Bagheri M, et al. Photon-counting computed tomography for vascular imaging of the head and neck: first in vivo human results. Invest Radiol. 2018;53(3):135–42.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Symons R, Sandfort V, Mallek M, Ulzheimer S, Pourmorteza A. Coronary artery calcium scoring with photon-counting CT: first in vivo human experience. Int J Cardiovasc Imaging. 2019;35(4):733–9.

    Article  PubMed  Google Scholar 

  58. Tao S, Rajendran K, McCollough CH, Leng S. Material decomposition with prior knowledge aware iterative denoising (MD-PKAID). Phys Med Biol. 2018;63(19):195003.

    Article  PubMed  CAS  Google Scholar 

  59. Taguchi K, Iwanczyk JS. Vision 20/20: single photon counting X-ray detectors in medical imaging. Med Phys. 2013;40(10):100901.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Taguchi K. Energy-sensitive photon counting detector-based X-ray computed tomography. Radiol Phys Technol. 2017;10(1):8–22.

    Article  PubMed  Google Scholar 

  61. Vanhecke TE, Madder RD, Weber JE, et al. Development and validation of a predictive screening tool for uninterpretable coronary CT angiography results. Circ Cardiovasc Imaging. 2011;4(5):490–7.

    Article  PubMed  Google Scholar 

  62. von Spiczak J, Mannil M, Peters B, et al. Photon counting computed Tomography with dedicated sharp convolution kernels—tapping the potential of a new technology for stent imaging. Invest Radiol. 2018;53(8):486–94.

    Article  Google Scholar 

  63. Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D. Photon-counting CT: technical principles and clinical prospects. Radiology. 2018;289(2):293–312.

    Article  PubMed  Google Scholar 

  64. Yanagawa M, Hata A, Honda O, et al. Subjective and objective comparisons of image quality between ultra-high-resolution CT and conventional area detector CT in phantoms and cadaveric human lungs. Eur Radiol. 2018;28(12):5060–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yu Z, Leng S, Jorgensen SM, et al. Evaluation of conventional imaging performance in a research CT system with a photon-counting detector array. Phys Med Biol. 2016;61:1572–95.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yu Z, Leng S, Kappler S, et al. Noise performance of low-dose CT-comparison between an energy integrating detector and a photon counting detector using a whole-body research photon counting CT scanner. J Med Imaging. 2016;3(4):043503.

    Article  Google Scholar 

  67. Zhang D, Li X, Liu B. Objective characterization of GE discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys. 2011;38(3):1178–88.

    Article  PubMed  Google Scholar 

  68. Zhou W, Montoya J, Gutjahr R, et al. Lung nodule volume quantification and shape differentiation with an ultra-high resolution technique on a photon-counting detector computed tomography system. J Med Imaging (Bellingham). 2017;4(4):043502. https://doi.org/10.1117/1.jmi.4.4.043502(epub 2017 Nov 16).

    Article  Google Scholar 

  69. Zhou W, Lane JI, Carlson ML, et al. Comparison of a photon-counting-detector CT with an energy-integrating-detector CT for temporal bone imaging: a cadaveric study. AJNR Am J Neuroradiol. 2018;39(9):1733–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou W, Abdurakhimova D, Bruesewitz M, et al. Impact of photon counting detector technology on kV selection and diagnostic workflow in CT. Proc SPIE Int Soc Opt Eng. 2018. https://doi.org/10.1117/12.2294952.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Flohr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flohr, T., Ulzheimer, S., Petersilka, M. et al. Basic principles and clinical potential of photon-counting detector CT. Chin J Acad Radiol 3, 19–34 (2020). https://doi.org/10.1007/s42058-020-00029-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42058-020-00029-z

Keywords

Navigation