Skip to main content

Advertisement

Log in

Endocrinopathies in beta thalassemia: a narrative review

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Beta thalassemia is the most common genetic blood disorder, characterized by reduced production or complete absence of beta-globin chains. The combination of systematic red blood cell transfusion and iron chelation therapy is the most readily available supportive treatment and one that has considerably prolonged the survival of thalassemia patients. Despite this, the development of endocrine abnormalities correlated with beta thalassemia still exists and is mostly associated with iron overload, chronic anemia, and hypoxia. A multifactorial approach has been employed to investigate other factors involved in the pathogenesis of endocrinopathies, including genotype, liver disease, HCV, splenectomy, socioeconomic factors, chelation therapy, and deficiency of elements. The development of specific biomarkers for predicting endocrinopathy risk has been the subject of extensive discussion. The objective of the present narrative review is to present recent data on endocrinopathies in beta thalassemia patients, including the prevalence, the proposed pathogenetic mechanisms, the risk factors, the diagnostic methods applied, and finally the recommended treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Carsote M, Vasiliu C, Trandafir AI et al (2022) New entity—thalassemic endocrine disease: major beta-thalassemia and endocrine involvement. Diagnostics 12:1921. https://doi.org/10.3390/diagnostics12081921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Viprakasit V, Ekwattanakit S (2018) Clinical classification, screening and diagnosis for thalassemia. Hematol Oncol Clin North Am 32:193–211

    Article  PubMed  Google Scholar 

  3. De Sanctis V, Soliman AT, Elsedfy H et al (2016) The ICET-A recommendations for the diagnosis and management of disturbances of glucose homeostasis in thalassemia major patients. Mediterr J Hematol Infect Dis 8. https://doi.org/10.4084/MJHID.2016.058

  4. Chern JPS, Lin K-H, Lu M-Y et al (2001) Abnormal glucose tolerance in transfusion-dependent-thalassemic patients. Diabetes Care 24:850–854. https://doi.org/10.2337/diacare.24.5.850

    Article  CAS  PubMed  Google Scholar 

  5. El-Samahy MH, Tantawy AA, Adly AA et al (2019) Evaluation of continuous glucose monitoring system for detection of alterations in glucose homeostasis in pediatric patients with β-thalassemia major. Pediatr Diabetes 20:65–72. https://doi.org/10.1111/pedi.12793

    Article  CAS  PubMed  Google Scholar 

  6. Hafez M, Youssry L, El-Hamed FA, Ibrahim A (2009) Abnormal glucose tolerance in βthalassemia: assessment of risk factors. Hemoglobin 33:101–108. https://doi.org/10.1080/03630260902817131

    Article  CAS  PubMed  Google Scholar 

  7. De Sanctis V, Soliman A, Daar S et al (2023) Glucose homeostasis and assessment of b-cell function by 3-hour oral glucose tolerance test (OGTT) in patients with b-thalassemia major with serum ferritin below 1000ng/dl: results from a single ICET-A Centre. Mediterr J Hematol Infect Dis 15:e2023006. https://doi.org/10.4084/mjhid.2023.006

    Article  PubMed  PubMed Central  Google Scholar 

  8. He LN, Chen W, Yang Y et al (2019) Elevated prevalence of abnormal glucose metabolism and other endocrine disorders in patients with β -thalassemia major: a meta-analysis. Biomed Res Int 2019 https://doi.org/10.1155/2019/6573497

  9. De Sanctis V (1995) Multicentre study on prevalence of endocrine complications in thalassaemia major. Clin Endocrinol 42:581–586. https://doi.org/10.1111/j.1365-2265.1995.tb02683.x

    Article  Google Scholar 

  10. De Sanctis V, Soliman AT, Daar S et al (2023) Longitudinal study of ICET-A on glucose tolerance, insulin sensitivity and β-cell secretion in eleven β-thalassemia major patients with mild iron overload. Acta Biomedica 94. https://doi.org/10.23750/abm.v94i1.14000

  11. Crafa A, Calogero AE, Cannarella R et al (2021) The burden of hormonal disorders: a worldwide overview with a particular look in Italy. Front Endocrinol (Lausanne) 12. https://doi.org/10.3389/fendo.2021.694325

  12. Hussein SZ (2022) Evaluation of thyroid hormones and ferritin level in patients with β-thalassemia. Med Pharm Rep 95:152–157. https://doi.org/10.15386/mpr-2053

    Article  PubMed  PubMed Central  Google Scholar 

  13. Magro S, Puzzonia P, Consarino C et al (1990) Hypothyroidism in patients with thalassemia syndromes. ACTA Haematol 84:72–76. https://doi.org/10.1159/000205032

    Article  CAS  PubMed  Google Scholar 

  14. Filosa A, Di Maio S, Aloj G et al (2006) Longitudinal study on thyroid function in patients with thalassemia major. J Pediatr Endocrinol Metab 19:1397–1404. https://doi.org/10.1515/jpem.2006.19.12.1397

    Article  CAS  PubMed  Google Scholar 

  15. Bazi A, Harati H, Khosravi-Bonjar A et al (2018) Hypothyroidism and hypoparathyroidism in thalassemia major patients: a study in Sistan and Baluchestan Province, Iran. Int J Endocrinol Metab 16. https://doi.org/10.5812/ijem.13228

  16. Haghpanah S, Jelodari S, Karamifar H et al (2018) The frequency of hypothyroidism and its relationship with HCV positivity in patients with thalassemia major in Southern Iran. Acta Biomedica 89:55–60. https://doi.org/10.23750/abm.v89i1.5778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abdel-Razek ARA, Abdel-Salam A, El-Sonbaty MM, Youness ER (2013) Study of thyroid function in Egyptian children with β-thalassemia major and β-thalassemia intermedia. J Egypt Public Health Assoc 88:148–152. https://doi.org/10.1097/01.EPX.0000436490.10201.28

    Article  PubMed  Google Scholar 

  18. Gathwala G, Das K, Agrawal N (2009) Thyroid hormone profile in beta-thalassemia major children. Bangladesh Med Res Counc Bull 35:71–72. https://doi.org/10.3329/bmrcb.v35i2.2534

    Article  PubMed  Google Scholar 

  19. Zervas A, Katopodi A, Protonotariou A et al (2002) Assessment of thyroid function in two hundred patients with b-thalassemia major. Thyroid 12:151–154. https://doi.org/10.1089/105072502753522383

    Article  PubMed  Google Scholar 

  20. Baghersalimi A, Rad AH, Koohmanaee S et al (2019) The cutoff of ferritin for evaluation of hypothyroidism in patients with thalassemia. J Pediatr Hematol Oncol 41:515–518. https://doi.org/10.1097/MPH.0000000000001489

    Article  CAS  PubMed  Google Scholar 

  21. Landau H, Goldfarbs A, Rachmilewitt EA et al (1993) Cross-sectional and longitudinal study of the pituitary-thyroid axis in patients with thalassaemia major. Clin Endocrinol (Oxf) 38:55–61. https://doi.org/10.1111/j.1365-2265.1993.tb00973.x

    Article  CAS  PubMed  Google Scholar 

  22. De Sanctis V, Soliman AT, Canatan D et al (2017) An ICET- a survey on hypoparathyroidism in patients with thalassaemia major and intermedia: a preliminary report. Acta Biomedica 88:435–444. https://doi.org/10.23750/abm.v88i4.6837

    Article  CAS  PubMed Central  Google Scholar 

  23. Angelopoulos NG, Goula A, Rombopoulos G et al (2006) Hypoparathyroidism in transfusion-dependent patients with β-thalassemia. J Bone Miner Metab 24:138–145. https://doi.org/10.1007/s00774-005-0660-1

    Article  PubMed  Google Scholar 

  24. Tangngam H, Mahachoklertwattana P, Poomthavorn P et al (2018) Under-recognized hypoparathyroidism in thalassemia. J Clin Res Pediatr Endocrinol 10:324–330. https://doi.org/10.4274/jcrpe.0020

    Article  PubMed  PubMed Central  Google Scholar 

  25. Origa R, Fiumana E, Gamberini MR et al (2005) Osteoporosis in β-thalassemia: clinical and genetic aspects. In: Annals of the New York Academy of Sciences. New York Academy of Sciences, 451–456. https://doi.org/10.1196/annals.1345.051

  26. Bozdağ M, Bayraktaroğlu S, Aydınok Y, Çallı MC (2018) MRI assessment of pituitary iron accumulation by using pituitary-R2 in β-thalassemia patients. Acta radiol 59:732–739. https://doi.org/10.1177/0284185117730099

    Article  PubMed  Google Scholar 

  27. Albu A, Barbu CG, Antonie L et al (2014) Risk factors associated with hypogonadism in β-Thalassemia major patients: predictors for a frequent complication of a rare disease. Postgrad Med 126:121–127. https://doi.org/10.3810/pgm.2014.09.2806

    Article  PubMed  Google Scholar 

  28. Balducci R, Toscano V, Finocchi G et al (2014) Effect of hCG or hCG + treatments in young thalassemic patients with hypogonadotropic hypogonadism. J Endocrinol Invest 13:1–7. https://doi.org/10.1007/BF03348567

    Article  Google Scholar 

  29. De Sanctis V, Daar S, Soliman AT et al (2022) Screening for glucose dysregulation in β-thalassemia major (β-TM): An update of current evidences and personal experience. Acta Biomedica 93. https://doi.org/10.23750/abm.v93i1.12802

  30. Farmakis D, Porter J, Taher A et al (2022) 2021 Thalassaemia international federation guidelines for the management of transfusion-dependent Thalassemia. Hemasphere 6. https://doi.org/10.1097/HS9.0000000000000732

  31. Zhang L, Meng Z, Jiang Z et al (2022) Indicators of glucose dysregulation and the relationship with iron overload in Chinese children with beta thalassemia major. Pediatr Diabetes 23:562–568. https://doi.org/10.1111/pedi.13260

    Article  CAS  PubMed  Google Scholar 

  32. English E, Idris I, Smith G et al (2015) The effect of anaemia and abnormalities of erythrocyte indices on HbA1c analysis: a systematic review. Diabetologia 58:1409–1421. https://doi.org/10.1007/s00125-015-3599-3

    Article  CAS  PubMed  Google Scholar 

  33. Warncke K, Konrad K, Kohne E et al (2016) Diabetes in patients with β-thalassemia or other hemoglobinopathies - analysis from the DPV database. Klin Padiatr 228:307–312. https://doi.org/10.1055/s-0042-111691

    Article  CAS  PubMed  Google Scholar 

  34. Noetzli LJ, Mittelman SD, Watanabe RM et al (2012) Pancreatic iron and glucose dysregulation in thalassemia major. Am J Hematol 87:155–160. https://doi.org/10.1002/ajh.22223

    Article  CAS  PubMed  Google Scholar 

  35. Ricchi P, Meloni A, Pistoia L et al (2023) Longitudinal prospective comparison of pancreatic iron by magnetic resonance in thalassemia patients transfusion-dependent since early childhood treated with combination deferiprone- desferrioxamine vs deferiprone or deferasirox monotherapy. Blood Transfus 485. https://doi.org/10.2450/BloodTransfus.485

  36. Pepe A, Pistoia L, Gamberini MR et al (2020) The close link of pancreatic iron with glucose metabolism and with cardiac complications in thalassemia major: a large, multicenter observational study. Diabetes Care 43:2830–2839. https://doi.org/10.2337/dc20-0908

    Article  PubMed  Google Scholar 

  37. Hashemieh M, Radfar M, Azarkeivan A et al (2017) T2* magnetic resonance imaging study of pancreatic iron overload and its relation with the diabetic state in thalassemic patients. J Pediatr Hematol Oncol 39:337–340. https://doi.org/10.1097/MPH.0000000000000767

    Article  CAS  PubMed  Google Scholar 

  38. Cario H, Holl RW, Debatin KMM, Kohne E (2003) Insulin sensitivity and β-cell secretion in thalassaemia major with secondary haemochromatosis: assessment by oral glucose tolerance test. Eur J Pediatr 162:139–146. https://doi.org/10.1007/s00431-002-1121-7

    Article  CAS  PubMed  Google Scholar 

  39. Chatterjee R, Bajoria R (2009) New concept in natural history and management of diabetes mellitus in thalassemia major diabetes and thalassaemia. Hemoglobin 33:127–130. https://doi.org/10.3109/09553000903347880

    Article  CAS  Google Scholar 

  40. Suvarna J, Ingle H, Deshmukh CT (2006) Insulin resistance and beta cell function in chronically transfused patients of thalassemia major. Indian Pediatr 43:393–400

    PubMed  Google Scholar 

  41. Ibrahim AS, Abd El-Fatah AH, Abd El-Halim AF, Mohamed FF (2023) Serum ferritin levels and other associated parameters with diabetes mellitus in adult patients suffering from beta thalassemia major. J Blood Med 14:67–81. https://doi.org/10.2147/jbm.s390666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Casale M, Cinque P, Ricchi P et al (2013) Effect of splenectomy on iron balance in patients with β-thalassemia major: a long-term follow-up. Eur J Haematol 91:69–73. https://doi.org/10.1111/ejh.12121

    Article  CAS  PubMed  Google Scholar 

  43. Meloni A, Pistoia L, Gamberini MR et al (2021) The link of pancreatic iron with glucose metabolism and cardiac iron in thalassemia intermedia: a large, multicenter observational study. J Clin Med 10. https://doi.org/10.3390/jcm10235561

  44. Pinto VM, Bacigalupo L, Gianesin B et al (2018) Lack of correlation between heart, liver and pancreas MRI-R2*: Results from long-term follow-up in a cohort of adult β-thalassemia major patients. Am J Hematol 93:79–82. https://doi.org/10.1002/ajh.25009

    Article  Google Scholar 

  45. Farmaki K, Angelopoulos N, Anagnostopoulos G et al (2006) Effect of enhanced iron chelation therapy on glucose metabolism in patients with β-thalassaemia major. Br J Haematol 134:438–444. https://doi.org/10.1111/j.1365-2141.2006.06203.x

    Article  CAS  PubMed  Google Scholar 

  46. Labropoulou-Karatza C, Goritsas C, Fragopanagou H et al (1999) High prevalence of diabetes mellitus among adult β-thalassemic patients with chronic hepatitis C. Eur J Gastroenterol Hepatol 11:1033–1036. https://doi.org/10.1097/00042737-199909000-00014

    Article  CAS  PubMed  Google Scholar 

  47. De Sanctis V, Soliman A, Daar S et al (2022) Insulin-like growth factor-1 (IGF-1) and glucose dysregulation in young adult patients with β-thalassemia major: causality or potential link? Acta Biomedica 93. https://doi.org/10.23750/abm.v93i6.13288

  48. de Sanctis V, Soliman AT, Daar S et al (2021) Long-term follow-up of β-transfusion-dependent thalassemia (TDT) normoglycemic patients with reduced insulin secretion to oral glucose tolerance test (OGTT): A pilot study. Mediterr J Hematol Infect Dis 13:. https://doi.org/10.4084/MJHID.2021.021

  49. Christoforidis A, Perifanis V, Athanassiou-Metaxa M (2006) Combined chelation therapy improves glucose metabolism in patients with β-thalassaemia major. Br J Haematol 135:271–272. https://doi.org/10.1111/j.1365-2141.2006.06296.x

    Article  CAS  PubMed  Google Scholar 

  50. Farmaki K, Tzoumari I, Pappa C et al (2010) Normalisation of total body iron load with very intensive combined chelation reverses cardiac and endocrine complications of thalassaemia major. Br J Haematol 148:466–475. https://doi.org/10.1111/j.1365-2141.2009.07970.x

    Article  PubMed  Google Scholar 

  51. De Sanctis V, Soliman AT, Elsedfy H et al (2016) Diabetes and glucose metabolism in thalassemia major: an update. Expert Rev Hematol 9:401–408. https://doi.org/10.1586/17474086.2016.1136209

    Article  CAS  PubMed  Google Scholar 

  52. de Sanctis V, Soliman A, Tzoulis P et al (2022) The use of oral glucose-lowering agents (GLAs) in β-thalassemia patients with diabetes: Preliminary data from a retrospective study of ICET-A Network. Acta Biomedica 93. https://doi.org/10.23750/abm.v93i2.12056

  53. Stefánsson B V., Heerspink HJL, Wheeler DC et al (2020) Correction of anemia by dapagliflozin in patients with type 2 diabetes. J Diabetes Complicat 34. https://doi.org/10.1016/j.jdiacomp.2020.107729

  54. Soliman AT, De Sanctis V, Yassin M et al (2017) Chronic anemia and thyroid function. Acta Biomedica 88:119–127. https://doi.org/10.23750/abm.v88i1.6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sabato AR, De Sanctis V, Atti G et al (1983) Primary hypothyroidism and the low T3 syndrome in thalassaemia major. Arch Dis Child 58:120–127. https://doi.org/10.1136/adc.58.2.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Taher AT, Musallam KM, Karimi M et al (2010) Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: the OPTIMAL CARE study. Blood 115:1886–1892. https://doi.org/10.1182/blood

    Article  CAS  PubMed  Google Scholar 

  57. Chirico V, Antonio L, Vincenzo S et al (2013) Thyroid dysfunction in thalassaemic patients: ferritin as a prognostic marker and combined iron chelators as an ideal therapy. Eur J Endocrinol 169:785–793. https://doi.org/10.1530/EJE-13-0627

    Article  CAS  PubMed  Google Scholar 

  58. Khandelwal D, Tandon N (2012) Overt and subclinical hypothyroidism who to treat and how. Drugs 72:17–33. https://doi.org/10.2165/11598070-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  59. Saki F, Salehifar A, Kassaee SR, Omrani GR (2020) Association of vitamin D and FGF23 with serum ferritin in hypoparathyroid thalassemia: a case control study. BMC Nephrol 21. https://doi.org/10.1186/s12882-020-02101-3

  60. Even L, Bader T, Hochberg Z (2007) Nocturnal calcium, phosphorus and parathyroid hormone in the diagnosis of concealed and subclinical hypoparathyroidism. Eur J Endocrinol 156:113–116. https://doi.org/10.1530/eje.1.02316

    Article  CAS  PubMed  Google Scholar 

  61. Zafeiriou DI, Athanasiou M, Katzos G et al (2001) Hypoparathyroidism and intracranial calcifications in β-thalassemia. J Pediatr 138:411. https://doi.org/10.1067/mpd.2001.112654

    Article  CAS  PubMed  Google Scholar 

  62. Karimi M, Rasekhi AR, Rasekh M et al (2009) Hypoparathyroidism and intracerebral calcification in patients with beta-thalassemia major. Eur J Radiol 70:481–484. https://doi.org/10.1016/j.ejrad.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  63. Abdelrazik N, Ghanem H (2007) Failure of puberty in Egyptian beta thalassemic patients: experience in north east region - Dakahlia province. Hematology 12:449–456. https://doi.org/10.1080/10245330701448503

    Article  PubMed  Google Scholar 

  64. De Sanctis V, Soliman AT, Yassin MA et al (2018) Hypogonadism in male thalassemia major patients: pathophysiology, diagnosis and treatment. Acta Biomed 89:6–15. https://doi.org/10.23750/abm.v89i2

    Article  PubMed  PubMed Central  Google Scholar 

  65. de Sanctis V, Soliman AT, Daar S, di Maio S (2019) Adverse events during testosterone replacement therapy in 95 young hypogonadal thalassemic men. Acta Biomedica 90:228–232. https://doi.org/10.23750/abm.v90i2.8477

    Article  CAS  PubMed  Google Scholar 

  66. Al-Rimawi HS, Jallad MF, Amarin ZO, Obeidat BR (2005) Hypothalamic-pituitary-gonadal function in adolescent females with beta-thalassemia major. Int J Gynecol Obstet 90:44–47. https://doi.org/10.1016/j.ijgo.2005.03.024

    Article  CAS  Google Scholar 

  67. Singh P, Samaddar S, Parakh N et al (2021) Pubertal development and its determinants in adolescents with transfusion-dependent thalassemia. Indian Pediatr 58:635–638

    Article  PubMed  Google Scholar 

  68. Arab-Zozani M, Kheyrandish S, Rastgar A, Miri-Moghaddam E (2021) A systematic review and meta-analysis of stature growth complications in β-thalassemia major patients. Ann Glob Health 87. https://doi.org/10.5334/aogh.3184

  69. Shahid Z, Hassan S, Ghazanfar S et al (2021) investigating the role of ferritin in determining sexual underdevelopment in beta-thalassemia major patients: a cross-sectional analysis from Pakistan. Cureus. https://doi.org/10.7759/cureus.15572

    Article  PubMed  PubMed Central  Google Scholar 

  70. Grundy RG, Woods KA, Savage MO, Evans JP (1994) Relationship of endocrinopathy to iron chelation status in young patients with thalassaemia major. Arch Dis Child 71:128–32. https://doi.org/10.1136/adc.71.2.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. De Sanctis V, Soliman AT, Daar S et al (2019) The experience of a tertiary unit on the clinical phenotype and management of hypogonadism in female adolescents and young adults with transfusion dependent thalassemia. Acta Biomedica 90:158–167. https://doi.org/10.23750/abm.v90i1.8143

    Article  CAS  PubMed  Google Scholar 

  72. Naomi B-W, Olivieri NF, Beverley T et al (1990) Effect of age at the start of iron chelation therapy on gonadal function in β- thalassemia major. N Engl J Med 323:713–719. https://doi.org/10.1056/NEJM199009133231104

    Article  Google Scholar 

  73. Elalfy M, Ragab E, Abdel-Aziz E et al (2013) Deferiprone and desferrioxamine combined chelation could improve puberty of adolescent males with b-thalassemia major with preserved pituitary and testicular function. Egypt J Haematol 38:149–154. https://doi.org/10.7123/01.EJH.0000434285.33634.83

    Article  Google Scholar 

  74. Yassin MA, Soliman AT, De Sanctis V et al (2018) Statural growth and prevalence of endocrinopathies in relation to liver iron content (LIC) in adult patients with beta thalassemia major (BTM) and sickle cell disease (SCD). Acta Biomed 89:33–40. https://doi.org/10.23750/abm.v89i2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Argyropoulou M, Kiortsis D, Metafratzi Z et al (2001) Pituitary gland height evaluated by MR in patients with β-thalassemia major: a marker of pituitary gland function. Neuroradiology 43:1056–1058. https://doi.org/10.1007/s002340100634

    Article  CAS  PubMed  Google Scholar 

  76. De Sanctis V, Soliman AT, Elsedfy H et al (2017) Gonadal dysfunction in adult male patients with thalassemia major: an update for clinicians caring for thalassemia. Expert Rev Hematol 10:1095–1106. https://doi.org/10.1080/17474086.2017.1398080

    Article  CAS  PubMed  Google Scholar 

  77. De Sanctis V, Vullo C, Katz M et al (1988) Gonadal function in patients with β thalassaemia major. J Clin Pathol 41:133–137. https://doi.org/10.1136/jcp.41.2.133

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gaudio A, Morabito N, Catalano A et al (2019) Pathogenesis of thalassemia major-associated osteoporosis: a review with insights from clinical experience. JCRPE J Clin Res Pediatr Endocrinol 11:110–117. https://doi.org/10.4274/jcrpe.galenos.2018.2018.0074

    Article  PubMed  Google Scholar 

  79. Huang KE, Mittelman SD, Coates TD et al (2015) A significant proportion of thalassemia major patients have adrenal insufficiency detectable on provocative testing. J Pediatr Hematol Oncol 37:54–59. https://doi.org/10.1097/MPH.0000000000000199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Poomthavorn P, Isaradisaikul B, Chuansumrit A et al (2010) High prevalence of “biochemical” adrenal insufficiency in thalassemics: is it a matter of different testings or decreased cortisol binding globulin? J Clin Endocrinol Metab 95:4609–4615. https://doi.org/10.1210/jc.2010-0205

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efthimia Vlachaki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venou, TM., Barmpageorgopoulou, F., Peppa, M. et al. Endocrinopathies in beta thalassemia: a narrative review. Hormones (2023). https://doi.org/10.1007/s42000-023-00515-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42000-023-00515-w

Keywords

Navigation