Skip to main content

Advertisement

Log in

Uric acid index is a risk for mild cognitive impairment in type 2 diabetes

  • Original Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Background

A new uric acid (UA) index has recently been proposed, while serum uric acid (SUA), fasting triglyceride, and fasting blood glucose levels in the index are shown to affect cognitive function. This study aims to investigate the clinical value of the UA index for assessing mild cognitive impairment (MCI) in type 2 diabetes (T2D) patients.

Methods

This was an observational cross-sectional study with 616 participants. A generalized additive model was used to determine a linear or curvilinear relationship between cognitive performance and the UA index. Logistic regression and random forest models were both developed. A receiver operating characteristic curve (ROC) was delineated and the area under the curve (AUC) was calculated.

Results

MCI was diagnosed in 313 participants (50.81%). Compared with the T2D-normal cognitive function group, MCI subjects had higher UA indexes, lower cognitive scores, and lower education levels (p < 0.001). Generalized additive models showed the UA index and the Montreal Cognitive Assessment (MoCA) score to be decreased linearly (p < 0.001). The UA index AUC was 0.751 (95% CI = 0.713–0.789, p < 0.001). The optimal cut-off point for the identification of MCI based on the UA index was 11.26 (sensitivity: 62.3%, specificity: 75.9%). Results for females in the cohort yielded an AUC change of + 2.5%, the less-educated population (AUC change of + 4.7%), and the hypertensive population (AUC change of + 1.1%). The AUCs were 0.791 (95% CI = 0.720–0.863) for the random forest model and 0.804 (95% CI = 0.770–0.837) for the logistic regression model, and no statistical significance was found (p = 0.758).

Conclusion

This study showed that the increased UA index was independently associated with MCI in patients with T2D, especially among female, less-educated, and hypertensive patients. It could be a potential indicator of MCI in T2D patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Some or all datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author upon reasonable request.

References

  1. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement 18(4):700–789. https://doi.org/10.1002/alz.12638

  2. GBD 2019 Dementia Forecasting Collaborators (2022) Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7(2):e105–e125. https://doi.org/10.1016/s2468-2667(21)00249-8

  3. Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A (2020) The growing epidemic of diabetes mellitus. Curr Vasc Pharmacol 18(2):104–109. https://doi.org/10.2174/1570161117666190405165911

    Article  CAS  PubMed  Google Scholar 

  4. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko E, JMagliano D J, (2022) IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119

    Article  PubMed  Google Scholar 

  5. Srikanth V, Sinclair AJ, Hill-Briggs F, Moran C, Biessels GJ (2020) Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities. Lancet Diabetes Endocrinol 8(6):535–545. https://doi.org/10.1016/s2213-8587(20)30118-2

    Article  PubMed  Google Scholar 

  6. Yuan X, Wang X (2017) Mild cognitive impairment in type 2 diabetes mellitus and related risk factors: a review. Rev. Neurosci. 28(7):715–723. https://doi.org/10.1515/revneuro-2017-0016

    Article  PubMed  Google Scholar 

  7. Zheng T, Liu H, Qin L, Chen B, Zhang X, Hu X, Xiao LQin S, (2018) Oxidative stress-mediated influence of plasma DPP4 activity to BDNF ratio on mild cognitive impairment in elderly type 2 diabetic patients: results from the GDMD study in China. Metab Clin Exp 87:105–112. https://doi.org/10.1016/j.metabol.2018.03.014

    Article  CAS  PubMed  Google Scholar 

  8. Shen X-N, Niu L-D, Wang Y-J, Cao X-P, Liu Q, Tan L, Zhang C-T (2019) Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry 90(5):590–598. https://doi.org/10.1136/jnnp-2018-319148

    Article  PubMed  Google Scholar 

  9. Ekblad LL, Rinne JO, Puukka P, Laine H, Ahtiluoto S, Sulkava R, Viitanen M, Jula A (2017) Insulin resistance predicts cognitive decline: an 11-year follow-up of a nationally representative adult population sample. Diabetes Care 40(6):751–758. https://doi.org/10.2337/dc16-2001

    Article  PubMed  Google Scholar 

  10. Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GE, Biessels GJ (2015) Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol 14(3):329–340. https://doi.org/10.1016/s1474-4422(14)70249-2

    Article  PubMed  Google Scholar 

  11. Veselý B, Koriťáková E, Bohnen NI, Viszlayová D, Királová S, Valkovič P, Kurča E, Rektor I (2019) The contribution of cerebrovascular risk factors, metabolic and inflammatory changes to cognitive decline in Parkinson’s disease: preliminary observations. J Neural Transm (Vienna) 126(10):1303–1312. https://doi.org/10.1007/s00702-019-02043-7

    Article  CAS  PubMed  Google Scholar 

  12. Bowman GL, Shannon J, Frei B, Kaye J, AQuinn J F, (2010) Uric acid as a CNS antioxidant. J Alzheimers Dis 19(4):1331–1336. https://doi.org/10.3233/jad-2010-1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen C, Li X, Lv Y, Yin Z, Zhao F, Liu Y, Li C, Ji S, Zhou J, Wei Y, Cao X, Wang J, Gu H, Lu F, Liu Z, Shi X (2021) High blood uric acid is associated with reduced risks of mild cognitive impairment among older adults in china: a 9-year prospective cohort study. Front Aging Neurosci 13:747686. https://doi.org/10.3389/fnagi.2021.747686

    Article  PubMed  PubMed Central  Google Scholar 

  14. Scheepers L, Jacobsson LTH, Kern S, Johansson L, Dehlin M, Skoog I (2019) Urate and risk of Alzheimer’s disease and vascular dementia: a population-based study. Alzheimers Dement 15(6):754–763. https://doi.org/10.1016/j.jalz.2019.01.014

    Article  PubMed  Google Scholar 

  15. Euser SM, Hofman A, Westendorp RG, Breteler MM (2009) Serum uric acid and cognitive function and dementia. Brain 132(Pt 2):377–382. https://doi.org/10.1093/brain/awn316

    Article  CAS  PubMed  Google Scholar 

  16. Xue L, Liu Y, Xue H, Xue J, Sun K, Wu L, Hou P (2017) Low uric acid is a risk factor in mild cognitive impairment. Neuropsychiatr Dis Treat 13:2363–2367. https://doi.org/10.2147/ndt.S145812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maruhashi T, Hisatome I, Kihara Y, Higashi Y (2018) Hyperuricemia and endothelial function: From molecular background to clinical perspectives. Atherosclerosis 278:226–231. https://doi.org/10.1016/j.atherosclerosis.2018.10.007

    Article  CAS  PubMed  Google Scholar 

  18. Knapp LT, Klann E (2002) Potentiation of hippocampal synaptic transmission by superoxide requires the oxidative activation of protein kinase C. J Neurosci 22(3):674–683. https://doi.org/10.1523/jneurosci.22-03-00674.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schretlen DJ, Inscore AB, Jinnah HA, Rao V, Gordon B, Pearlson GD (2007) Serum uric acid and cognitive function in community-dwelling older adults. Neuropsychology 21(1):136–140. https://doi.org/10.1037/0894-4105.21.1.136

    Article  PubMed  Google Scholar 

  20. Li J, Dong BR, Lin P, Zhang J, Liu GJ (2010) Association of cognitive function with serum uric acid level among Chinese nonagenarians and centenarians. Exp Gerontol 45(5):331–335. https://doi.org/10.1016/j.exger.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  21. Vannorsdall TD, Kueider AM, Carlson MC, Schretlen DJ (2014) Higher baseline serum uric acid is associated with poorer cognition but not rates of cognitive decline in women. Exp Gerontol 60:136–139. https://doi.org/10.1016/j.exger.2014.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kleber M, Delgado G, Grammer T, Silbernagel G, Huang J, Krämer B, Ritz E, März W (2015) Uric acid and cardiovascular events: a Mendelian randomization study. J the Am Soc Nephrol 26(11):2831–2838. https://doi.org/10.1681/asn.2014070660

    Article  CAS  Google Scholar 

  23. Khalil M, Salwa M, Sultana S, Al Mamun M, Barman N, Haque M (2020) Role of serum uric acid in ischemic stroke: a case-control study in Bangladesh. Plos One 15(8):e0236747. https://doi.org/10.1371/journal.pone.0236747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang XL, Kim Y, Kim TJ, Jung S, Kim CK, Lee SH (2016) Association of serum uric acid and cardioembolic stroke in patients with acute ischemic stroke. J Neurol Sci 370:57–62. https://doi.org/10.1016/j.jns.2016.09.019

    Article  CAS  PubMed  Google Scholar 

  25. Romero-Sevilla R, Casado-Naranjo I, Portilla-Cuenca JC, Duque-de San Juan B, Fuentes JM, Lopez-Espuela F (2018) Vascular risk factors and lesions of vascular nature in magnetic resonance as predictors of progression to dementia in patients with mild cognitive impairment. Curr Alzheimer Res 15(7):671–678. https://doi.org/10.2174/1567205015666180119100840

    Article  CAS  PubMed  Google Scholar 

  26. Perna L, Mons U, Schöttker B, Brenner H (2016) Association of cognitive function and serum uric acid: are cardiovascular diseases a mediator among women? Exp Gerontol 81:37–41. https://doi.org/10.1016/j.exger.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  27. Huang R, Tian S, Han J, Lin H, Guo D, Wang J, An K, Wang S (2019) U-shaped association between serum uric acid levels and cognitive functions in patients with type 2 diabetes: a cross-sectional study. J Alzheimer’s Dis 69(1):135–144. https://doi.org/10.3233/jad-181126

    Article  CAS  Google Scholar 

  28. Rojas-Humpire R, Jauregui-Rodriguez K, Albornoz S, Ruiz Mamani PG, Gutierrez-Ajalcrina R, Huancahuire-Vega S (2021) Association and diagnostic value of a novel uric acid index to cardiovascular risk. Pract Lab Med 26:e00247. https://doi.org/10.1016/j.plabm.2021.e00247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kinoshita T, Shimoda M, Sanada J, Fushimi Y, Hirata Y, Irie S, Tanabe A, Obata A, Kimura T, Hirukawa H, Kohara K, Tatsumi F, Kamei S, Nakanishi S, Mune T, Kaku K, Kaneto H (2016) Association of GA/HbA1c ratio and cognitive impairment in subjects with type 2 diabetes mellitus. J Diabetes Complicat 30(8):1452–1455. https://doi.org/10.1016/j.jdiacomp.2016.08.008

    Article  Google Scholar 

  30. Huang X, Ng S, Chia N, Acharyya S, Setiawan F, Lu Z, Tan Y, Ng E, Wen M, Ng A, Tay K, Au W, Tan E, Tan L (2018) Higher serum triglyceride levels are associated with Parkinson’s disease mild cognitive impairment. Mov Disord 33(12):1970–1971. https://doi.org/10.1002/mds.27521

    Article  PubMed  Google Scholar 

  31. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020. (2020) Diabetes Care 43(Suppl 1):S14–s31. https://doi.org/10.2337/dc20-S002

  32. Yao L, Wang X, Zhong Y, Wang Y, Wu J, Geng J, Zhou Y, Chen J, Guan P, Xu Y, Chen L, Liu LHuY (2021) The triglyceride-glucose index is associated with diabetic retinopathy in Chinese patients with type 2 diabetes: a hospital-based, nested, case-control study. Diabetes Metab Syndr Obes 14:1547–1555. https://doi.org/10.2147/dmso.S294408

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lv L, Zhou Y, Chen X, Gong L, Wu J, Luo W, Shen Y, Han S, Hu J, Wang Y, Li Q, Wang Z (2021) Relationship between the TyG index and diabetic kidney disease in patients with type-2 diabetes mellitus. Diabetes Metab Syndr Obes : Targets Ther 14:3299–3306. https://doi.org/10.2147/dmso.S318255

    Article  Google Scholar 

  34. Flaxel C, Adelman R, Bailey S, Fawzi A, Lim J, Vemulakonda G, Ying G (2020) Diabetic retinopathy preferred practice pattern®. Ophthalmology 127(1):P66–P145. https://doi.org/10.1016/j.ophtha.2019.09.025

    Article  PubMed  Google Scholar 

  35. Boulton A, Vinik A, Arezzo J, Bril V, Feldman E, Freeman R, Malik R, Maser R, Sosenko J, Ziegler D (2005) Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 28(4):956–962. https://doi.org/10.2337/diacare.28.4.956

    Article  PubMed  Google Scholar 

  36. Albert M, DeKosky S, Dickson D, Dubois B, Feldman H, Fox N, Gamst A, Holtzman D, Jagust W, Petersen R, Snyder P, Carrillo M, Thies B, Phelps C (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia 7(3):270–279. https://doi.org/10.1016/j.jalz.2011.03.008

    Article  PubMed  Google Scholar 

  37. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  38. Álvarez-Lario B, Macarrón-Vicente J (2010) Uric acid and evolution. Rheumatology (Oxford) 49(11):2010–2015. https://doi.org/10.1093/rheumatology/keq204

    Article  CAS  PubMed  Google Scholar 

  39. Qiao M, Chen C, Liang Y, Luo Y, Wu W (2021) The influence of serum uric acid level on Alzheimer’s disease: a narrative review. Biomed Res Int 2021:5525710. https://doi.org/10.1155/2021/5525710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen X, Wu G, Schwarzschild MA (2012) Urate in Parkinson’s disease: more than a biomarker? Curr Neurol Neurosci Rep 12(4):367–375. https://doi.org/10.1007/s11910-012-0282-7

    Article  CAS  PubMed  Google Scholar 

  41. Ya BL, Liu Q, Li HF, Cheng HJ, Yu T, Chen L, Wang Y, Yuan LL, Li WJ, Liu WY, Bai B (2018) Uric acid protects against focal cerebral ischemia/reperfusion-induced oxidative stress via activating Nrf2 and regulating neurotrophic factor expression. Oxid Med Cell Longev 2018:6069150. https://doi.org/10.1155/2018/6069150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Desideri G, Gentile R, Antonosante A, Benedetti E, Grassi, D, Cristiano L, Manocchio A, Selli S, Ippoliti R, Ferri C, Borghi C, Giordano A, Cimini A (2017) Uric acid amplifies Aβ amyloid affects involved in the cognitive dysfunction/dementia: evidences from an experimental model in vitro. J Cell Physiol 232:1069–1078. https://doi.org/10.1002/jcp.25509

  43. Latourte A, Soumaré A, Bardin T, Perez-Ruiz F, Debette S, Richette P (2018) Uric acid and incident dementia over 12 years of follow-up: a population-based cohort study. Ann Rheum Dis 77(3):328–335. https://doi.org/10.1136/annrheumdis-2016-210767

    Article  CAS  PubMed  Google Scholar 

  44. Vannorsdall TD, Jinnah HA, Gordon B, Kraut M, Schretlen DJ (2008) Cerebral ischemia mediates the effect of serum uric acid on cognitive function. Stroke 39(12):3418–3420. https://doi.org/10.1161/strokeaha.108.521591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schretlen D, Inscore A, Vannorsdall T, Kraut M, Pearlson G, Gordon B, Jinnah H (2007) Serum uric acid and brain ischemia in normal elderly adults. Neurology 69(14):1418–1423. https://doi.org/10.1212/01.wnl.0000277468.10236.f1

    Article  CAS  PubMed  Google Scholar 

  46. Verhaaren B, Vernooij M, Dehghan A, Vrooman H, de Boer R, Hofman A, Witteman J, Niessen W, Breteler M, van der Lugt A, Ikram M (2013) The relation of uric acid to brain atrophy and cognition: the Rotterdam Scan Study. Neuroepidemiology 41(1):29–34. https://doi.org/10.1159/000346606

    Article  PubMed  Google Scholar 

  47. Shih C, Chen C, Wen C, Liu H, Kuo H (2012) Relationship between serum uric acid and cerebral white matter lesions in the elderly. Nutr Metab Cardiovasc Dis 22(2):154–159. https://doi.org/10.1016/j.numecd.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  48. Mangge H, Zelzer S, Puerstner P, Schnedl W, Reeves G, Postolache T, Weghuber D (2013) Uric acid best predicts metabolically unhealthy obesity with increased cardiovascular risk in youth and adults. Obesity (Silver Spring, Md.) 21(1):E71-77. https://doi.org/10.1002/oby.20061

    Article  CAS  PubMed  Google Scholar 

  49. Zhu Y, Hu Y, Huang T, Zhang Y, Li Z, Luo C, Luo Y, Yuan H, Hisatome I, Yamamoto T, Cheng J (2014) High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochem Biophys Res Commun 447(4):707–714. https://doi.org/10.1016/j.bbrc.2014.04.080

    Article  CAS  PubMed  Google Scholar 

  50. Ford E, Li C, Cook S, Choi H (2007) Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation 115(19):2526–2532. https://doi.org/10.1161/circulationaha.106.657627

    Article  CAS  PubMed  Google Scholar 

  51. Ndrepepa G (2018) Uric acid and cardiovascular disease. Int J Clin Chem 484:150–163. https://doi.org/10.1016/j.cca.2018.05.046

    Article  CAS  Google Scholar 

  52. Kim JW, Byun MS, Yi D, Lee JH, Jeon SY, Ko K, Jung G, Lee HN, Lee JY, Sohn CH, Lee YS, Shin SA, Kim YK, Lee DY (2020) Serum uric acid, Alzheimer-related brain changes, and cognitive impairment. Front Aging Neurosci 12:160. https://doi.org/10.3389/fnagi.2020.00160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gorska-Ciebiada M, Saryusz-Wolska M, Borkowska A, Ciebiada M, Loba J (2015) C-reactive protein, advanced glycation end products, and their receptor in type 2 diabetic, elderly patients with mild cognitive impairment. Front Aging Neurosci 7:209. https://doi.org/10.3389/fnagi.2015.00209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Valente T, Gella A, Fernàndez-Busquets X, Unzeta M, Durany N (2010) Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol Dis 37(1):67–76. https://doi.org/10.1016/j.nbd.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  55. Nägga K, Gustavsson AM, Stomrud E, Lindqvist D, van Westen D, Blennow K, Zetterberg H, Melander O, Hansson O (2018) Increased midlife triglycerides predict brain β-amyloid and tau pathology 20 years later. Neurology 90(1):e73–e81. https://doi.org/10.1212/wnl.0000000000004749

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee YG, Park M, Jeong SH, Kang SW, Baik K, Jung JH, Lee PH, Sohn YH, Ye BS (2021) Effects of baseline serum uric acid and apolipoprotein E4 on longitudinal cognition and cerebral metabolism. Neurobiol. Aging 106:223–231. https://doi.org/10.1016/j.neurobiolaging.2021.05.003

    Article  CAS  PubMed  Google Scholar 

  57. Carcaillon L, Brailly-Tabard S, Ancelin ML, Rouaud O, Dartigues JF, Guiochon-Mantel A, Scarabin PY (2014) High plasma estradiol interacts with diabetes on risk of dementia in older postmenopausal women. Neurology 82(6):504–511. https://doi.org/10.1212/wnl.0000000000000107

    Article  CAS  PubMed  Google Scholar 

  58. Kong J, Kang M, Kang H (2022) The relationship between late-life depression and cognitive function in older Korean adults: a moderation analysis of physical activity combined with lower-body muscle strength. Int J Environ Res Public Health 19(14):8769. https://doi.org/10.3390/ijerph19148769

  59. Eikelboom WS, Pan M, Ossenkoppele R, Coesmans M, Gatchel JR, Ismail Z, Lanctôt KL, Fischer CE, Mortby ME, van den Berg E, Papma JM (2022) Sex differences in neuropsychiatric symptoms in Alzheimer’s disease dementia: a meta-analysis. Alzheimers Res Ther 14(1):48. https://doi.org/10.1186/s13195-022-00991-z

    Article  PubMed  PubMed Central  Google Scholar 

  60. Geda YE, Schneider LS, Gitlin LN, Miller DS, Smith GS, Bell J, Evans J, Lee M, Porsteinsson A, Lanctôt KL, Rosenberg PB, Sultzer DL, Francis PT, Brodaty H, Padala PP, Onyike CU, Ortiz LA, Ancoli-Israel S, Bliwise DL, Martin JL, Vitiello MV, Yaffe K, Zee PC, Herrmann N, Sweet RA, Ballard C, Khin NA, Alfaro C, Murray PS, Schultz S, Lyketsos CG (2013) Neuropsychiatric symptoms in Alzheimer’s disease: past progress and anticipation of the future. Alzheimers Dement 9(5):602–608. https://doi.org/10.1016/j.jalz.2012.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen Y, Lv C, Li X, Zhang J, Chen K, Liu Z, Li H, Fan J, Qin T, Luo L, Zhang Z (2019) The positive impacts of early-life education on cognition, leisure activity, and brain structure in healthy aging. Aging (Albany NY) 11(14):4923–4942. https://doi.org/10.18632/aging.102088

    Article  PubMed  Google Scholar 

  62. Wang Q, Shen JJ, Sotero M, Li CA, Hou Z (2018) Income, occupation and education: are they related to smoking behaviors in China? Plos One 13(2):e0192571. https://doi.org/10.1371/journal.pone.0192571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Barr PB, Salvatore JE, Maes H, Aliev F, Latvala A, Viken R, Rose RJ, Kaprio J, Dick DM (2016) Education and alcohol use: a study of gene-environment interaction in young adulthood. Soc Sci Med 162:158–167. https://doi.org/10.1016/j.socscimed.2016.06.031

    Article  PubMed  PubMed Central  Google Scholar 

  64. Atella V, Kopinska J (2014) Body weight, eating patterns, and physical activity: the role of education. Demography 51(4):1225–1249. https://doi.org/10.1007/s13524-014-0311-z

    Article  PubMed  Google Scholar 

  65. Choi AI, Weekley CC, Chen SC, Li S, Kurella Tamura M, Norris KC, Shlipak MG (2011) Association of educational attainment with chronic disease and mortality: the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis 58(2):228–234. https://doi.org/10.1053/j.ajkd.2011.02.388

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tefera YA, Bishu KG, Gebregziabher M, Dawson AZ, Egede LE (2019) Source of education, source of care, access to glucometers, and independent correlates of diabetes knowledge in Ethiopian adults with diabetes. J Natl Med Assoc 111(2):218–230. https://doi.org/10.1016/j.jnma.2018.10.008

    Article  PubMed  Google Scholar 

  67. Ou YN, Tan CC, Shen XN, Xu W, Hou XH, Dong Q, Tan L, Yu JT (2020) Blood pressure and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 209 prospective studies. Hypertension 76(1):217–225. https://doi.org/10.1161/hypertensionaha.120.14993

    Article  CAS  PubMed  Google Scholar 

  68. Petrova M, Prokopenko S, Pronina E, Mozheyko E (2010) Diabetes type 2, hypertension and cognitive dysfunction in middle age women. J Neurol Sci 299(1–2):39–41. https://doi.org/10.1016/j.jns.2010.08.057

    Article  PubMed  Google Scholar 

  69. Borshchev YY, Uspensky YP, Galagudza MM (2019) Pathogenetic pathways of cognitive dysfunction and dementia in metabolic syndrome. Life Sci 237:116932. https://doi.org/10.1016/j.lfs.2019.116932

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Gratitude is expressed to all authors for their efforts and to the participants for their understanding and support of our study.

Funding

This work was supported by a grant from the Fund of Scientific Research Innovation of the First Affiliated Hospital of Harbin Medical University (grant number 2020M27, China).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by XW-T, YT-Z, ZW-Y, SD-P, XL, YX-Y, and YY-S. The first draft of the manuscript was written by XW-T. XY-G critically reviewed the manuscript for important intellectual content and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xin-Yuan Gao.

Ethics declarations

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the First Affiliated Hospital of Harbin Medical University, Harbin, China.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

MoCA Test Full and instructions in Chinese (Beijing) version 7.1

figure a

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, XW., Zhang, YT., Li, X. et al. Uric acid index is a risk for mild cognitive impairment in type 2 diabetes. Hormones 22, 425–439 (2023). https://doi.org/10.1007/s42000-023-00465-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-023-00465-3

Keywords

Navigation