Skip to main content

Advertisement

Log in

Selenoprotein P and its potential role in Alzheimer’s disease

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease associated with cognitive decline, loss of memory, and progressive cerebral atrophy. The trace element selenium (Se) is known to be involved in brain pathology. Selenoprotein P (SELENOP), as the main Se transport protein, is, to a great extent, responsible for maintaining Se homeostasis and the hierarchy of selenoprotein expression in the body. Adequate Se supply through SELENOP is vital for proper brain development and function. Additionally, SELENOP may be implicated in pathological processes in the central nervous system, including those in AD. The current review summarizes recent findings on the possible role of SELENOP in AD, with a focus on probable mechanisms: Se delivery to neurons, antioxidant activity, cytoskeleton assembly, interaction with redox-active metals (e.g., copper and iron), and misfolded proteins (amyloid beta and tau protein). The use of SELENOP as a biomarker of Se status is also briefly discussed. Epidemiological studies on Se supplementation are beyond the scope of the current review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kelly EB (2008) Alzheimer’s disease (genes & disease). Chelsea House Publishers, Infobase Publishing, New York

    Google Scholar 

  2. Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426(6968):900–904. https://doi.org/10.1038/nature02264

    Article  CAS  PubMed  Google Scholar 

  3. Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases). Coord Chem Rev 256(19–20):2129–2141. https://doi.org/10.1016/j.ccr.2012.03.013

    Article  CAS  Google Scholar 

  4. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, Nguyen M, Haditsch U, Raha D, Griffin C, Holsinger LJ, Arastu-Kapur S, Kaba S, Lee A, Ryder MI, Potempa B, Mydel P, Hellvard A, Adamowicz K, Hasturk H, Walker GD, Reynolds EC, Faull RLM, Curtis MA, Dragunow M, Potempa J (2019) Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 5(1):eaau3333. https://doi.org/10.1126/sciadv.aau3333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mandavilli A (2006) The amyloid code. Nat Med 12:747. https://doi.org/10.1038/nm0706-747

    Article  CAS  PubMed  Google Scholar 

  6. Michalke B, Halbach S, Nischwitz V (2009) JEM spotlight: metal speciation related to neurotoxicity in humans. J Environ Monit 11(5):939–954. https://doi.org/10.1039/b817817h

    Article  CAS  PubMed  Google Scholar 

  7. Killin LO, Starr JM, Shiue IJ, Russ TC (2016) Environmental risk factors for dementia: a systematic review. BMC Geriatr 16(1):175. https://doi.org/10.1186/s12877-016-0342-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443. https://doi.org/10.1126/science.1083516

    Article  CAS  PubMed  Google Scholar 

  9. Schweizer U, Schomburg L, Köhrle J (2016) Selenoprotein P and selenium distribution in mammals. In: Selenium: its molecular biology and role in human health, 4th edn. Springer International Publishing, Cham, pp 261–274. https://doi.org/10.1007/978-3-319-41283-2_22

    Chapter  Google Scholar 

  10. Lobanov AV, Hatfield DL, Gladyshev VN (2009) Eukaryotic selenoproteins and selenoproteomes. BBA-Gen Subjects 1790(11):1424–1428. https://doi.org/10.1016/j.bbagen.2009.05.014

    Article  CAS  Google Scholar 

  11. Chen J, Berry MJ (2004) Selenium and selenoproteins in the brain and brain diseases. J Neurochem 86(1):1–12. https://doi.org/10.1046/j.1471-4159.2003.01854.x

    Article  CAS  Google Scholar 

  12. Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268. https://doi.org/10.1016/s0140-6736(11)61452-9

    Article  CAS  PubMed  Google Scholar 

  13. Vinceti M, Mandrioli J, Borella P, Michalke B, Tsatsakis A, Finkelstein Y (2014) Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicol Lett 230(2):295–303. https://doi.org/10.1016/j.toxlet.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  14. Michalke B, Willkommen D, Drobyshev E, Solovyev N (2018) The importance of speciation analysis in neurodegeneration research. TRAC-Trend Anal Chem 104:160–170. https://doi.org/10.1016/j.trac.2017.08.008

    Article  CAS  Google Scholar 

  15. Steinbrenner H, Brigelius-Flohé R (2015) Das essenzielle Spurenelement Selen: Selenbedarf in Gesundheit und Krankheit. Aktuel Ernahrungsmed 40(06):368–378. https://doi.org/10.1055/s-0035-1552774

    Article  CAS  Google Scholar 

  16. Solovyev N, Drobyshev E, Bjørklund G, Dubrovskii Y, Lysiuk R, Rayman MP (2018) Selenium, selenoprotein P, and Alzheimer’s disease: is there a link? Free Radic Biol Med 127:124–133. https://doi.org/10.1016/j.freeradbiomed.2018.02.030

    Article  CAS  PubMed  Google Scholar 

  17. Burk RF, Hill KE (2009) Selenoprotein P-expression, functions, and roles in mammals. BBA-Gen Subjects 1790(11):1441–1447. https://doi.org/10.1016/j.bbagen.2009.03.026

    Article  CAS  Google Scholar 

  18. Solovyev ND (2015) Importance of selenium and selenoprotein for brain function: from antioxidant protection to neuronal signalling. J Inorg Biochem 153:1–12. https://doi.org/10.1016/j.jinorgbio.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  19. Brigelius-Flohe R, Flohe L (2017) Selenium and redox signaling. Arch Biochem Biophys 617:48–59. https://doi.org/10.1016/j.abb.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  20. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. New Engl J Med 362(4):329–344. https://doi.org/10.1056/NEJMra0909142

    Article  CAS  PubMed  Google Scholar 

  21. Brigelius-Flohe R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830(5):3289–3303. https://doi.org/10.1016/j.bbagen.2012.11.020

    Article  CAS  PubMed  Google Scholar 

  22. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, Mehr L, Aichler M, Walch A, Lamp D, Jastroch M, Miyamoto S, Wurst W, Ursini F, Arnér ESJ, Fradejas-Villar N, Schweizer U, Zischka H, Friedmann Angeli JP, Conrad M (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172(3):409–422.e421. https://doi.org/10.1016/j.cell.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Zhou Y, Schweizer U, Savaskan NE, Hua D, Kipnis J, Hatfield DL, Gladyshev VN (2008) Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J Biol Chem 283(4):2427–2438. https://doi.org/10.1074/jbc.M707951200

    Article  CAS  PubMed  Google Scholar 

  24. Loef M, Schrauzer GN, Walach H (2011) Selenium and Alzheimer’s disease: a systematic review. J Alzheimers Dis 26(1):81–104. https://doi.org/10.3233/JAD-2011-110414

    Article  CAS  PubMed  Google Scholar 

  25. Cardoso BR, Roberts BR, Bush AI, Hare DJ (2015) Selenium, selenoproteins and neurodegenerative diseases. Metallomics 7:1213–1228. https://doi.org/10.1039/c5mt00075k

    Article  CAS  PubMed  Google Scholar 

  26. Gerhardsson L, Lundh T, Londos E, Minthon L (2011) Cerebrospinal fluid/plasma quotients of essential and non-essential metals in patients with Alzheimer’s disease. J Neural Transm 118(6):957–962. https://doi.org/10.1007/s00702-011-0605-x

    Article  CAS  PubMed  Google Scholar 

  27. Cardoso BR, Hare DJ, Lind M, McLean CA, Volitakis I, Laws SM, Masters CL, Bush AI, Roberts BR (2017) The APOE ε4 allele is associated with lower selenium levels in the brain: implications for Alzheimer’s disease. ACS Chem Neurosci 8(7):1459–1464. https://doi.org/10.1021/acschemneuro.7b00014

    Article  CAS  Google Scholar 

  28. Vinceti M, Chiari A, Eichmüller M, Rothman KJ, Filippini T, Malagoli C, Weuve J, Tondelli M, Zamboni G, Nichelli PF, Michalke B (2017) A selenium species in cerebrospinal fluid predicts conversion to Alzheimer’s dementia in persons with mild cognitive impairment. Alzheimers Res Ther 9(1):100. https://doi.org/10.1186/s13195-017-0323-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cardoso BR, Hare DJ, Bush AI, Li QX, Fowler CJ, Masters CL, Martins RN, Ganio K, Lothian A, Mukherjee S, Kapp EA, Roberts BR (2017) Selenium levels in serum, red blood cells, and cerebrospinal fluid of Alzheimer’s disease patients: a report from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). J Alzheimers Dis 57(1):183–193. https://doi.org/10.3233/JAD-160622

    Article  CAS  PubMed  Google Scholar 

  30. Vinceti M, Michalke B, Malagoli C, Eichmüller M, Filippini T, Tondelli M, Bargellini A, Vinceti G, Zamboni G, Chiari A (2019) Selenium and selenium species in the etiology of Alzheimer’s dementia: the potential for bias of the case-control study design. J Trace Elem Med Biol 53:154–162. https://doi.org/10.1016/j.jtemb.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  31. Reddy VS, Bukke S, Dutt N, Rana P, Pandey AK (2017) A systematic review and meta-analysis of the circulatory, erythrocellular and CSF selenium levels in Alzheimer’s disease: a metal meta-analysis (AMMA study-I). J Trace Elem Med Biol 42:68–75. https://doi.org/10.1016/j.jtemb.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  32. Varikasuvu SR, Prasad VS, Kothapalli J, Manne M (2019) Brain selenium in Alzheimer’s disease (BRAIN SEAD Study): a systematic review and meta-analysis. Biol Trace Elem Res 189(2):361–369. https://doi.org/10.1007/s12011-018-1492-x

    Article  CAS  PubMed  Google Scholar 

  33. Rayman MP, Winther KH, Pastor-Barriuso R, Cold F, Thvilum M, Stranges S, Guallar E, Cold S (2018) Effect of long-term selenium supplementation on mortality: results from a multiple-dose, randomised controlled trial. Free Radic Biol Med 127:46–54. https://doi.org/10.1016/j.freeradbiomed.2018.02.015

    Article  CAS  PubMed  Google Scholar 

  34. Kryscio RJ, Abner EL, Caban-Holt A, Lovell M, Goodman P, Darke AK, Yee M, Crowley J, Schmitt FA (2017) Association of antioxidant supplement use and dementia in the prevention of Alzheimer’s disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol 74(5):567–573. https://doi.org/10.1001/jamaneurol.2016.5778

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vinceti M, Burlingame B, Filippini T, Naska A, Bargellini A, Borella P (2016) The epidemiology of selenium and human health. In: Hatfield DL, Schweizer U, Tsuji PA, Gladyshev VN (eds) Selenium: its molecular biology and role in human health. Springer International Publishing, Cham, pp 365–376. https://doi.org/10.1007/978-3-319-41283-2_31

    Chapter  Google Scholar 

  36. Akbaraly NT, Hininger-Favier I, Carrière I, Arnaud J, Gourlet V, Roussel AM, Berr C (2007) Plasma selenium over time and cognitive decline in the elderly. Epidemiology 18(1):52–58. https://doi.org/10.1097/01.ede.0000248202.83695.4e

    Article  PubMed  Google Scholar 

  37. Zhang S, Rocourt C, Cheng W-H (2010) Selenoproteins and the aging brain. Mech Ageing Dev 131(4):253–260. https://doi.org/10.1016/j.mad.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  38. Pillai R, Uyehara-Lock JH, Bellinger FP (2014) Selenium and selenoprotein function in brain disorders. IUBMB Life 66(4):229–239. https://doi.org/10.1002/iub.1262

    Article  CAS  PubMed  Google Scholar 

  39. Combs GF Jr (2015) Biomarkers of selenium status. Nutrients 7(4):2209–2236. https://doi.org/10.3390/nu7042209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Renko K (2018) Biomarkers of Se status. In: Michalke B (ed) Selenium. Springer International Publishing, Cham, pp 451–465. https://doi.org/10.1007/978-3-319-95390-8_23

    Chapter  Google Scholar 

  41. Saito Y, Misu H, Takayama H, Takashima S-i, Usui S, Takamura M, Kaneko S, Takamura T, Noguchi N (2018) Comparison of human selenoprotein P determinants in serum between our original methods and commercially available kits. Biol Pharm Bull 41(5):828–832. https://doi.org/10.1248/bpb.b18-00046

    Article  CAS  PubMed  Google Scholar 

  42. Hybsier S, Schulz T, Wu Z, Demuth I, Minich WB, Renko K, Rijntjes E, Köhrle J, Strasburger CJ, Steinhagen-Thiessen E, Schomburg L (2016) Sex-specific and inter-individual differences in biomarkers of selenium status identified by a calibrated ELISA for selenoprotein P. Redox Biol 11:403–414. https://doi.org/10.1016/j.redox.2016.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mandrioli J, Michalke B, Solovyev N, Grill P, Violi F, Lunetta C, Conte A, Sansone VA, Sabatelli M, Vinceti M (2017) Elevated levels of selenium species in cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated gene mutations. Neurodegener Dis 17(4–5):171–180. https://doi.org/10.1159/000460253

    Article  CAS  PubMed  Google Scholar 

  44. Solovyev N, Berthele A, Michalke B (2013) Selenium speciation in paired serum and cerebrospinal fluid samples. Anal Bioanal Chem 405(6):1875–1884. https://doi.org/10.1007/s00216-012-6294-y

    Article  CAS  PubMed  Google Scholar 

  45. Deitrich CL, Cuello-Nuñez S, Kmiotek D, Torma FA, del Castillo Busto ME, Fisicaro P, Goenaga-Infante H (2016) Accurate quantification of selenoprotein P (SEPP1) in plasma using isotopically enriched seleno-peptides and species-specific isotope dilution with HPLC coupled to ICP-MS/MS. Anal Chem 88(12):6357–6365. https://doi.org/10.1021/acs.analchem.6b00715

    Article  CAS  PubMed  Google Scholar 

  46. Jablonska E, Vinceti M (2015) Selenium and human health: witnessing a Copernican revolution? J Environ Sci Health C 33(3):328–368. https://doi.org/10.1080/10590501.2015.1055163

    Article  CAS  Google Scholar 

  47. Yang XG, Hill KE, Maguire MJ, Burk RF (2000) Synthesis and secretion of selenoprotein P by cultured rat astrocytes. BBA-Gen Subjects 1474(3):390–396. https://doi.org/10.1016/s0304-4165(00)00035-0

    Article  CAS  Google Scholar 

  48. Scharpf M, Schweizer U, Arzberger T, Roggendorf W, Schomburg L, Kohrle J (2007) Neuronal and ependymal expression of selenoprotein P in the human brain. J Neural Transm 114(7):877–884. https://doi.org/10.1007/s00702-006-0617-0

    Article  CAS  PubMed  Google Scholar 

  49. Steinbrenner H, Alili L, Bilgic E, Sies H, Brenneisen P (2006) Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radic Biol Med 40(9):1513–1523. https://doi.org/10.1016/j.freeradbiomed.2005.12.022

    Article  CAS  PubMed  Google Scholar 

  50. Koga M, Tanaka H, Yomogida K, Tsuchida J, Uchida K, Kitamura M, Sakoda S, Matsumiya K, Okuyama A, Nishimune Y (1998) Expression of selenoprotein-P messenger ribonucleic acid in the rat testis. Biol Reprod 58(1):261–265. https://doi.org/10.1095/biolreprod58.1.261

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y, Chen X (2011) Reducing selenoprotein P expression suppresses adipocyte differentiation as a result of increased preadipocyte inflammation. Am J Physiol Endocrinol Metab 300(1):E77–E85. https://doi.org/10.1152/ajpendo.00380.2010

    Article  CAS  PubMed  Google Scholar 

  52. Steinbrenner H, Hotze A-L, Speckmann B, Pinto A, Sies H, Schott M, Ehlers M, Scherbaum WA, Schinner S (2013) Localization and regulation of pancreatic selenoprotein P. J Mol Endocrinol 50(1):31–42. https://doi.org/10.1530/jme-12-0105

    Article  CAS  PubMed  Google Scholar 

  53. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9(7):775–806. https://doi.org/10.1089/ars.2007.1528

    Article  CAS  PubMed  Google Scholar 

  54. Burk RF, Hill KE (2015) Regulation of selenium metabolism and transport. Annu Rev Nutr 35(1):109–134. https://doi.org/10.1146/annurev-nutr-071714-034250

    Article  CAS  PubMed  Google Scholar 

  55. Kurokawa S, Hill KE, McDonald WH, Burk RF (2012) Long isoform mouse selenoprotein P (Sepp1) supplies rat myoblast L8 cells with selenium via endocytosis mediated by heparin binding properties and apolipoprotein E receptor-2 (ApoER2). J Biol Chem 287(34):28717–28726. https://doi.org/10.1074/jbc.M112.383521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Raman AV, Pitts MW, Seyedali A, Hashimoto AC, Seale LA, Bellinger FP, Berry MJ (2012) Absence of selenoprotein P but not selenocysteine lyase results in severe neurological dysfunction. Genes Brain Behav 11(5):601–613. https://doi.org/10.1111/j.1601-183X.2012.00794.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schweizer U, Brauer AU, Kohrle J, Nitsch R, Savaskan NE (2004) Selenium and brain function: a poorly recognized liaison. Brain Res Brain Res Rev 45(3):164–178. https://doi.org/10.1016/j.brainresrev.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  58. Takemoto AS, Berry MJ, Bellinger FP (2010) Role of selenoprotein P in Alzheimer’s disease. Ethn Dis 20(1):92–95. https://doi.org/10.1039/c3mt20282h

    Article  CAS  Google Scholar 

  59. Garcia T, Esparza J, Nogués MR, Romeu M, Domingo J, Gómez M (2010) Oxidative stress status and RNA expression in hippocampus of an animal model of Alzheimer’s disease after chronic exposure to aluminum. Hippocampus 20(1):218–225. https://doi.org/10.1002/hipo.20612

    Article  CAS  PubMed  Google Scholar 

  60. Bellinger FP, Bellinger MT, Seale LA, Takemoto AS, Raman AV, Miki T, Manning-Bog AB, Berry MJ, White LR, Ross GW (2011) Glutathione peroxidase 4 is associated with neuromelanin in substantia nigra and dystrophic axons in putamen of Parkinson’s brain. Mol Neurodegener 6:8. https://doi.org/10.1186/1750-1326-6-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen P, Wang C, Ma X, Zhang Y, Liu Q, Qiu S, Liu Q, Tian J, Ni J (2013) Direct interaction of selenoprotein R with clustering and its possible role in Alzheimer’s disease. PLoS One 8(6):e66384. https://doi.org/10.1371/journal.pone.0066384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Meng X-L, Chen C-L, Liu Y-Y, Su S-J, Gou J-M, Huan F-N, Wang D, Liu H-S, Ben S-B, Lu J (2019) Selenoprotein SELENOK enhances the migration and phagocytosis of microglial cells by increasing the cytosolic free Ca2+ level resulted from the up-regulation of IP3R. Neuroscience 406:38–49. https://doi.org/10.1016/j.neuroscience.2019.02.029

    Article  CAS  PubMed  Google Scholar 

  63. Hwang DY, Cho JS, Oh JH, Shim SB, Jee SW, Lee SH, Seo SJ, Lee SK, Lee SH, Kim YK (2005) Differentially expressed genes in transgenic mice carrying human mutant presenilin-2 (N141I): correlation of selenoprotein M with Alzheimer’s disease. Neurochem Res 30(8):1009–1019. https://doi.org/10.1007/s11064-005-6787-6

    Article  CAS  PubMed  Google Scholar 

  64. Chen P, Wang RR, Ma XJ, Liu Q, Ni JZ (2013) Different forms of selenoprotein M differentially affect Abeta aggregation and ROS generation. Int J Mol Sci 14(3):4385–4399. https://doi.org/10.3390/ijms14034385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rueli RH, Torres DJ, Dewing AS, Kiyohara AC, Barayuga SM, Bellinger MT, Uyehara-Lock JH, White LR, Moreira PI, Berry MJ, Perry G, Bellinger FP (2017) Selenoprotein S reduces endoplasmic reticulum stress-induced phosphorylation of tau: potential role in selenate mitigation of tau pathology. J Alzheimers Dis 55(2):749–762. https://doi.org/10.3233/JAD-151208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Turanov AA, Everley RA, Hybsier S, Renko K, Schomburg L, Gygi SP, Hatfield DL, Gladyshev VN (2015) Regulation of selenocysteine content of human selenoprotein P by dietary selenium and insertion of cysteine in place of selenocysteine. PLoS One 10(10):e0140353. https://doi.org/10.1371/journal.pone.0140353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Torres-Vega A, Pliego-Rivero BF, Otero-Ojeda GA, Gomez-Olivan LM, Vieyra-Reyes P (2012) Limbic system pathologies associated with deficiencies and excesses of the trace elements iron, zinc, copper, and selenium. Nutr Rev 70(12):679–692. https://doi.org/10.1111/j.1753-4887.2012.00521.x

    Article  PubMed  Google Scholar 

  68. Sutherland GT, Chami B, Youssef P, Witting PK (2013) Oxidative stress in Alzheimer’s disease: primary villain or physiological by-product? Redox Rep 18(4):134–141. https://doi.org/10.1179/1351000213Y.0000000052

    Article  CAS  PubMed  Google Scholar 

  69. Solovyev N, Vinceti M, Grill P, Mandrioli J, Michalke B (2017) Redox speciation of iron, manganese, and copper in cerebrospinal fluid by strong cation exchange chromatography - sector field inductively coupled plasma mass spectrometry. Anal Chim Acta 973:25–33. https://doi.org/10.1016/j.aca.2017.03.040

    Article  CAS  PubMed  Google Scholar 

  70. Du X, Zheng Y, Wang Z, Chen Y, Zhou R, Song G, Ni J, Liu Q (2014) Inhibitory act of selenoprotein P on Cu(+)/Cu(2+)-induced tau aggregation and neurotoxicity. Inorg Chem 53(20):11221–11230. https://doi.org/10.1021/ic501788v

    Article  CAS  PubMed  Google Scholar 

  71. Valentine WM, Hill KE, Austin LM, Valentine HL, Goloowitz D, Burk RF (2005) Brainstem axonal degeneration in mice with deletion of selenoprotein P. Toxicol Pathol 33(5):570–576. https://doi.org/10.1080/01926230500243045

    Article  CAS  PubMed  Google Scholar 

  72. Du X, Qiu S, Wang Z, Wang R, Wang C, Tian J, Liu Q (2014) Direct interaction between selenoprotein P and tubulin. Int J Mol Sci 15(6):10199–10214. https://doi.org/10.3390/ijms150610199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bellinger FP, He QP, Bellinger MT, Lin YL, Raman AV, White LR, Berry MJ (2008) Association of selenoprotein P with Alzheimer’s pathology in human cortex. J Alzheimers Dis 15(3):465–472. https://doi.org/10.3233/JAD-2008-15313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Steinbrenner H, Sies H (2013) Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch Biochem Biophys 536(2):152–157. https://doi.org/10.1016/j.abb.2013.02.021

    Article  CAS  PubMed  Google Scholar 

  75. Valentine WM, Abel TW, Hill KE, Austin LM, Burk RF (2008) Neurodegeneration in mice resulting from loss of functional selenoprotein P or its receptor apolipoprotein E receptor 2. J Neuropathol Exp Neurol 67(1):68–77. https://doi.org/10.1097/NEN.0b013e318160f347

    Article  PubMed  Google Scholar 

  76. Caito SW, Milatovic D, Hill KE, Aschner M, Burk RF, Valentine WM (2011) Progression of neurodegeneration and morphologic changes in the brains of juvenile mice with selenoprotein P deleted. Brain Res 1398:1–12. https://doi.org/10.1016/j.brainres.2011.04.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Peters MM, Hill KE, Burk RF, Weeber EJ (2006) Altered hippocampus synaptic function in selenoprotein P deficient mice. Mol Neurodegener 1:12. https://doi.org/10.1186/1750-1326-1-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hoffmann PR, Hoge SC, Li PA, Hoffmann FW, Hashimoto AC, Berry MJ (2007) The selenoproteome exhibits widely varying, tissue-specific dependence on selenoprotein P for selenium supply. Nucleic Acids Res 35(12):3963–3973. https://doi.org/10.1093/nar/gkm355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429(6994):883–891. https://doi.org/10.1038/nature02661

    Article  CAS  Google Scholar 

  80. Miller JA, Oldham MC, Geschwind DH (2008) A systems level analysis of transcriptional changes in Alzheimer’s disease and normal aging. J Neurosci 28(6):1410–1420. https://doi.org/10.1523/JNEUROSCI.4098-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rueli R, Parubrub AC, Dewing AST, Hashimoto AC, Bellinger MT, Weeber EJ, Uyehara-Lock JH, White LR, Berry MJ, Bellinger FP (2015) Increased selenoprotein P in choroid plexus and cerebrospinal fluid in Alzheimer’s disease brain. J Alzheimers Dis 44(2):379–383. https://doi.org/10.3233/jad-141755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The funding from the Russian Science Foundation, grant No. 18-73-00055, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Solovyev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovyev, N. Selenoprotein P and its potential role in Alzheimer’s disease. Hormones 19, 73–79 (2020). https://doi.org/10.1007/s42000-019-00112-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-019-00112-w

Keywords

Navigation