Skip to main content
Log in

A topology for P-systems with active membranes

  • Research Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

This paper proposes a study of deterministic P systems with active membranes in the context of discrete time dynamical systems. First of all, we prove that, for a fixed set of objects and labels, the set of all P system configuration is countable and that the dynamical behaviors defining a chaotic system are not possible. Then, we define a notion of distance between membrane configurations encoding the intuitive concept of “dissimilarity” between configurations. We prove that all functions defined by evolution, communication, and division rules are continuous under that distance and that the resulting topological space is discrete but not complete. Furthermore, we adapt in a natural way the classical notions of sensitivity to initial conditions and topological transitivity to P systems, and we show that P systems exhibiting those new properties exist. Finally, we prove that the proposed distance is efficiently computable, i.e., its computation only requires polynomial time with respect to the size of the input configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data Structure 1:
Fig. 1
Algorithm 1
Algorithm 2

Similar content being viewed by others

Notes

  1. Even when dissolution rules are considered, they only allow the membrane structure to decrease in depth.

  2. To avoid the problem of multiple representations for the same multiset, we consider as a representation the smaller string in lexicographic order.

References

  1. Păun, Gh. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143.

    Article  MathSciNet  Google Scholar 

  2. Păun, Gh. (2001). P systems with active membranes: Attacking NP-complete problems. Journal of Automata, Languages and Combinatorics, 6(1), 75–90.

    MathSciNet  Google Scholar 

  3. Sosík, P. (2019). P systems attacking hard problems beyond NP: A survey. Journal of Membrane Computing, 1, 198–208.

    Article  MathSciNet  Google Scholar 

  4. Martín-Vide, C., Păun, Gh., Pazos, J., & Rodríguez-Patón, A. (2003). Tissue P systems. Theoretical Computer Science, 296(2), 295–326.

    Article  MathSciNet  Google Scholar 

  5. Song, B., Li, K., Orellana-Martín, D., Zeng, X., & Pérez-Jiménez, M. J. (2023). Tissue P systems with states in cells. IEEE Transactions on Computers, 72(9), 2561–2570.

    Article  Google Scholar 

  6. Song, B., Li, K., & Zeng, X. (2022). Monodirectional evolutional symport tissue P systems with promoters and cell division. IEEE Transactions on Parallel Distributed Systems, 33(2), 332–342.

    Article  Google Scholar 

  7. Song, B., Zeng, X., Jiang, M., & Pérez-Jiménez, M. J. (2021). Monodirectional tissue P systems with promoters. IEEE Transactions on Cybernetics, 51(1), 438–450.

    Article  Google Scholar 

  8. Pavel, A. B., Arsene, O., & Buiu, C. (2010). Enzymatic numerical P systems—A new class of membrane computing systems. In Li, K., Tang, Z., Li, R., Nagar, A. K., & Thamburaj, R. (eds.) Proceedings 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2010), pp. 1331–1336.

  9. Ionescu, M., Păun, Gh., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2–3), 279–308.

    MathSciNet  Google Scholar 

  10. Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2019). A path to computational efficiency through membrane computing. Theoretical Computer Science, 777, 443–453.

    Article  MathSciNet  Google Scholar 

  11. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2019). A gentle introduction to membrane systems and their computational properties. In T. Song, P. Zheng, M. L. D. Wong, & X. Wang (Eds.), Bio-inspired computing models and algorithms (pp. 1–32). World Scientific.

    Google Scholar 

  12. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2018). A survey on space complexity of P systems with active membranes. International Journal of Advances in Engineering Sciences and Applied Mathematics, 10(3), 221–229.

    Article  MathSciNet  Google Scholar 

  13. Pan, L., & Pérez-Jiménez, M. J. (2010). Computational complexity of tissue-like P systems. Journal of Complexity, 26(3), 296–315.

    Article  MathSciNet  Google Scholar 

  14. Pérez-Jiménez, M. J. (2010). A computational complexity theory in membrane computing. In Păun, Gh., Pérez-Jiménez, M. J., Riscos-Núñez, A., Rozenberg, G., & Salomaa, A. (eds.) Membrane Computing, 10th International Workshop, WMC 2009. Lecture Notes in Computer Science, vol. 5957, pp. 125–148. Springer.

  15. Kůrka, P. (2003). Topological and symbolic dynamics. Paris: Société Mathématique de France.

    Google Scholar 

  16. López, D., & Sempere, J. M. (2005). Editing distances between membrane structures. In International Workshop on Membrane Computing, pp. 326–341. Springer.

  17. Kari, J. (2005). Theory of cellular automata: A survey. Theoretical Computer Science, 334(1–3), 3–33.

    Article  MathSciNet  Google Scholar 

  18. Formenti, E., & Kůrka, P. (2009). Dynamics of cellular automata in non-compact spaces. In R. Meyer (Ed.), Encyclopedia of complexity and systems science (pp. 2232–2242). New York, NY: Springer.

    Chapter  Google Scholar 

  19. Dennunzio, A., Formenti, E., Manzoni, L., Margara, L., & Porreca, A. E. (2019). On the dynamical behaviour of linear higher-order cellular automata and its decidability. Information Sciences, 486, 73–87.

    Article  Google Scholar 

  20. Dennunzio, A., Formenti, E., & Margara, L. (2023). An easy to check characterization of positive expansivity for additive cellular automata over a finite abelian group. IEEE Access, 11, 121246–121255.

    Article  Google Scholar 

  21. Dennunzio, A., Formenti, E., Grinberg, D., & Margara, L. (2021). Decidable characterizations of dynamical properties for additive cellular automata over a finite abelian group with applications to data encryption. Information Sciences, 563, 183–195.

    Article  MathSciNet  Google Scholar 

  22. Dennunzio, A., Formenti, E., Grinberg, D., & Margara, L. (2020). Chaos and ergodicity are decidable for linear cellular automata over (z/mz)n. Information Sciences, 539, 136–144.

    Article  MathSciNet  Google Scholar 

  23. Dennunzio, A., Formenti, E., Grinberg, D., & Margara, L. (2021). An efficiently computable characterization of stability and instability for linear cellular automata. Journal of Computer and System Sciences, 122, 63–71.

    Article  MathSciNet  Google Scholar 

  24. Béaur, P., & Kari, J. (2020). Decidability in group shifts and group cellular automata. In Esparza, J., & Král’, D. (eds.) 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic. LIPIcs, vol. 170, (pp. 12–11213). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

  25. Dennunzio, A., Formenti, E., & Margara, L. (2024). An efficient algorithm deciding chaos for linear cellular automata over (\({\mathbb {Z}}\)/m\({\mathbb {Z}}\))n with applications to data encryption. Inf Sci, 657, 119942. https://doi.org/10.1016/j.ins.2023.119942.

    Article  Google Scholar 

  26. Song, B., Li, K., Orellana-Martín, D., Pérez-Jiménez, M. J., & Pérez-Hurtado, I. (2022). A survey of nature-inspired computing: Membrane computing. ACM Computing Surveys, 54(1), 22–12231.

    Article  Google Scholar 

  27. Păun, Gh., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The Oxford handbook of membrane computing. Oxford University Press.

    Google Scholar 

  28. Devaney, R. L. (1989). An introduction to chaotic dynamical systems. Addison-Wesley advanced book program: Addison-Wesley.

    Google Scholar 

  29. Banks, J., Brooks, J., Cairns, G., Davis, G., & Stacey, P. (1992). On Devaney’s definition of chaos. American Mathematical Monthly, 99, 332–334.

    Article  MathSciNet  Google Scholar 

  30. Codenotti, B., & Margara, L. (1996). Transitive cellular automata are sensitive. The American Mathematical Monthly, 103(1), 58–62.

    Article  MathSciNet  Google Scholar 

  31. Cattaneo, G., Formenti, E., Margara, L., & Mauri, G. (1999). On the dynamical behavior of chaotic cellular automata. Theoretical Computer Science, 217(1), 31–51.

    Article  MathSciNet  Google Scholar 

  32. Cattaneo, G., Formenti, E., Margara, L., & Mazoyer, J. (1997). A shift-invariant metric on s\({}^{{\rm zz}}\) inducing a non-trivial tolology. In Prívara, I., & Ruzicka, P. (eds.) Mathematical Foundations of Computer Science 1997, 22nd International Symposium, MFCS’97, Bratislava, Slovakia, August 25-29, 1997, Proceedings. Lecture Notes in Computer Science, vol. 1295, (pp. 179–188). Springer.

  33. Rudyn, W. (1995). Principes D’analyse Mathématique. Ediscience International.

    Google Scholar 

  34. Punnen, A. P., & Nair, K. P. K. (1994). Improved complexity bound for the maximum cardinality bottleneck bipartite matching problem. Discrete Applied Mathematics, 55(1), 91–93.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by PRIN PNRR P2022MPFRT CASCA (“Cellular Automata Synthesis for Cryptography Applications”) and by MUR under the grant “Dipartimenti di Eccellenza 2023-2027” of the Department of Informatics, Systems and Communication of the University of Milano-Bicocca, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Dennunzio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dennunzio, A., Formenti, E., Manzoni, L. et al. A topology for P-systems with active membranes. J Membr Comput 5, 193–204 (2023). https://doi.org/10.1007/s41965-023-00132-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-023-00132-x

Keywords

Navigation