Skip to main content
Log in

Assessment of ultimate bearing capacity of rock-socketed piles using hybrid approaches

  • Original Paper
  • Published:
Multiscale and Multidisciplinary Modeling, Experiments and Design Aims and scope Submit manuscript

Abstract

In geotechnical engineering, accurately estimating the ultimate bearing capacity (\({Q}_{u}\)) of rock-socketed piles remains a crucial challenge. This study introduces a methodology that integrates advanced optimization algorithms, specifically Dandelion Optimization (DO) and the Crystal Structure Algorithm (CryStal), with Support Vector Regression (SVR) to enhance predictive capabilities. Three distinct models—SVDO, SVCS, and a hybrid SVR model—are developed through this integration. The core of this predictive framework is SVR, known for its efficacy in capturing intricate non-linear relationships between input variables and the ultimate bearing capacity of rock-socketed piles. To improve predictive accuracy, DO strategically adjusts hyperparameters to emulate the growth and dispersal patterns of dandelion seeds, while CryStal delicately optimizes SVR parameters inspired by crystalline atomic structures. The resulting models offer valuable insights for precisely predicting the ultimate bearing capacity of rock-socketed piles in geotechnical engineering. Among these, SVCS stands out with an exceptional R2 value of 0.997, indicating an outstanding fit to the data, and the lowest Root Mean Squared Error (RMSE) at 930.7, underscoring its unparalleled predictive accuracy. In conclusion, this study presents an innovative approach within geotechnical engineering for the precise estimation of the ultimate bearing capacity of rock-socketed piles. The insights gained contribute significantly to considerations of stability and safety in construction projects, emphasizing a multidisciplinary approach beyond artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akbari Garakani A, Heidari B, Mokhtari Jozani S, Ghasemi-Fare O (2022) Numerical and analytical study on axial ultimate bearing capacity of fixed-head energy piles in different soils. Int J Geomech 22(1):4021258

    Article  Google Scholar 

  • Akbarzadeh MR, Ghafourian H, Anvari A, Pourhanasa R, Nehdi ML (2023) Estimating compressive strength of concrete using neural electromagnetic field optimization. Materials 16(11):4200

    Article  Google Scholar 

  • Bahmed IT, Khatti J, Grover KS (2024) Hybrid soft computing models for predicting unconfined compressive strength of lime stabilized soil using strength property of virgin cohesive soil. Bull Eng Geol Env 83(1):46

    Article  Google Scholar 

  • Bell FG (1996) Lime stabilization of clay minerals and soils. Eng Geol 42(4):223–237

    Article  Google Scholar 

  • Bozozuk M and Bozozuk M (1981) Bearing capacity of pile preloaded by downdrag

  • Chen W, Sarir P, Bui X-N, Nguyen H, Tahir MM, Jahed Armaghani D (2020) Neuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pile. Eng Comput 36:1101–1115

    Article  Google Scholar 

  • Coyle HM, Castello RR (1981) New design correlations for piles in sand. J Geotech Eng Div 107(7):965–986

    Article  Google Scholar 

  • Coyle HM, Bartoskewitz RE and Berger WJ (1973) Bearing capacity prediction by wave equation analysis–state of the art

  • Daniel C, Khatti J, Grover KS (2024) Assessment of compressive strength of high-performance concrete using soft computing approaches. Comput Concr 33(1):55

    Google Scholar 

  • Farooqui SA, Shees MM, Alsharekh MF, Alyahya S, Khan RA, Sarwar A, Islam M, Khan S (2021) Crystal Structure Algorithm (CryStAl) based selective harmonic elimination modulation in a cascaded H-bridge multilevel inverter. Electronics 10(24):3070

    Article  Google Scholar 

  • Fellenius BH (1989) Prediction of pile capacity. Predicted and observed axial behavior of piles: results of a pile prediction symposium, 286–295

  • Gunn SR (1998) Support vector machines for classification and regression. ISIS Tech Report 14(1):5–16

    Google Scholar 

  • Haykin S (2009) Neural networks and learning machines, 3/E. Pearson Education India

    Google Scholar 

  • Hosseini S, Khatti J, Taiwo BO, Fissha Y, Grover KS, Ikeda H, Pushkarna M, Berhanu M, Ali M (2023) Assessment of the ground vibration during blasting in mining projects using different computational approaches. Sci Rep 13(1):18582

    Article  Google Scholar 

  • Jamhiri B, Xu Y, Jalal FE, Chen Y (2023a) Hybridizing neural network with trend-adjusted exponential smoothing for time-dependent resistance forecast of stabilized fine sands under rapid shearing. Transport Infrastruct Geotechnol 10(1):62–81. https://doi.org/10.1007/s40515-021-00198-z

    Article  Google Scholar 

  • Jamhiri B, Xu Y, Shadabfar M, Costa S (2023b) Probabilistic machine learning for predicting desiccation cracks in clayey soils. Bull Eng Geol Env 82(9):355. https://doi.org/10.1007/s10064-023-03366-2

    Article  Google Scholar 

  • Jamhiri B, Xu Y, Jalal FE, Chen Y (2021) Hybridizing neural network with trend-adjusted exponential smoothing for time-dependent resistance forecast of stabilized fine sands under rapid shearing. Transport Infrastruct Geotechnol 10:1–20

    Google Scholar 

  • Janbu N (1976) Static bearing capacity of friction piles. Sechste Europaeische Konferenz Fuer Bodenmechanik Und Grundbau, 1

  • Khanmohammadi M, Armaghani DJ, Sabri Sabri MM (2022) Prediction and optimization of pile bearing capacity considering effects of time. Mathematics 10(19):3563

    Article  Google Scholar 

  • Khatti J, Grover K (2022a) A study of relationship among correlation coefficient, performance, and overfitting using regression analysis. Int J Sci Eng Res 13:1074–1085

    Google Scholar 

  • Khatti J, Grover KS (2022c) Determination of suitable hyperparameters of artificial neural network for the best prediction of geotechnical properties of soil. Int J Res Appl Sci Eng Technol 10(5):4934–4961

    Article  Google Scholar 

  • Khatti J, Grover KS (2023a) A scientometrics review of soil properties prediction using soft computing approaches. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-10024-z

    Article  Google Scholar 

  • Khatti J, Grover KS (2023b) Estimation of intact rock uniaxial compressive strength using advanced machine learning. Transport Infrastruct Geotechnol. https://doi.org/10.1007/s40515-023-00357-4

  • Khatti J, Grover KS, Kim H-J, Mawuntu KBA, Park T-W (2024) Prediction of ultimate bearing capacity of shallow foundations on cohesionless soil using hybrid lstm and rvm approaches: an extended investigation of multicollinearity. Comput Geotech 165:105912

    Article  Google Scholar 

  • Khatti J and Grover KS (2022b) Application of artificial intelligence in geotechnical engineering: a review. Techno-Societal 2016, international conference on advanced technologies for societal applications, 77–85.

  • Khatti J, Jangid AK and Grover KS (2020) A review: applications of machine intelligence in civil engineering. National Conference on Resilient Infrastructure-NCRI

  • Khatti J, Samadi H, Grover KS (2023) Estimation of settlement of pile group in clay using soft computing techniques. Geotech Geol Eng 42:1–32

    Google Scholar 

  • Kisi O, Parmar KS (2016) Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. J Hydrol 534:104–112

    Article  Google Scholar 

  • Lee I-M, Lee J-H (1996) Prediction of pile bearing capacity using artificial neural networks. Comput Geotech 18(3):189–200

    Article  Google Scholar 

  • Li L-L, Chang Y-B, Tseng M-L, Liu J-Q, Lim MK (2020) Wind power prediction using a novel model on wavelet decomposition-support vector machines-improved atomic search algorithm. J Clean Prod 270:121817

    Article  Google Scholar 

  • Luenberger DG, Ye Y (1984) Linear and non-linear programming, vol 2. Springer

    Google Scholar 

  • Mahesh B (2020) Machine learning algorithms—a review. Int J Sci Res (IJSR) 9:381–386

    Google Scholar 

  • Maizir H, Kassim KA (2013) Neural network application in prediction of axial bearing capacity of driven piles. Proc Int Multiconf Eng Comput Sci 1:13–15

    Google Scholar 

  • Masoumi F, Najjar-Ghabel S, Safarzadeh A, Sadaghat B (2020) Automatic calibration of the groundwater simulation model with high parameter dimensionality using sequential uncertainty fitting approach. Water Supply 20(8):3487–3501. https://doi.org/10.2166/ws.2020.241

    Article  Google Scholar 

  • Meenakshi M (2020) Machine learning algorithms and their real-life applications: a survey. In: Proceedings of the International Conference on Innovative Computing and Communications (ICICC)

  • Meyerhof GG (1976) Bearing capacity and settlement of pile foundations. J Geotech Eng Div 102(3):197–228

    Article  Google Scholar 

  • Momeni E, Maizir H, Gofar N, Nazir R (2013) prediction of axial bearing capacity of driven piles in granular. Jurnal Teknologi 61(3):15–20

    Article  Google Scholar 

  • Momeni E, Nazir R, Armaghani DJ, Maizir H (2014) Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement 57:122–131

    Article  Google Scholar 

  • Murlidhar BR, Sinha RK, Mohamad ET, Sonkar R, Khorami M (2020) The effects of particle swarm optimisation and genetic algorithm on ANN results in predicting pile bearing capacity. Int J Hydromechatron 3(1):69–87

    Article  Google Scholar 

  • Paik K, Salgado R (2003) Determination of bearing capacity of open-ended piles in sand. J Geotech Geoenviron Eng 129(1):46–57

    Article  Google Scholar 

  • Pham TA, Vu H-LT (2021) Application of ensemble learning using weight voting protocol in the prediction of pile bearing capacity. Math Probl Eng 2021:1–14

    Google Scholar 

  • Pham TA, Ly H-B, Tran VQ, Giap LV, Vu H-LT, Duong H-AT (2020) Prediction of pile axial bearing capacity using artificial neural network and random forest. Appl Sci 10(5):1871

    Article  Google Scholar 

  • Randolph MF, Wroth CP (1978) Analysis of deformation of vertically loaded piles. J Geotech Eng Div 104(12):1465–1488

    Article  Google Scholar 

  • Rezazadeh S, Eslami A (2017) Empirical methods for determining shaft bearing capacity of semi-deep foundations socketed in rocks. J Rock Mech Geotech Eng 9(6):1140–1151

    Article  Google Scholar 

  • Serrano A, Olalla C (1994) Ultimate bearing capacity of rock masses. Int J Rock Mech Min Sci Geomech Abstracts 31(2):93–106

    Article  Google Scholar 

  • Sridharan A, Nagaraj HB (2005) Plastic limit and compaction characteristics of finegrained soils. Proc Inst Civ Eng Ground Improve 9(1):17–22

    Article  Google Scholar 

  • Talatahari S, Azizi M, Tolouei M, Talatahari B, Sareh P (2021) Crystal structure algorithm (CryStAl): a metaheuristic optimization method. IEEE Access 9:71244–71261

    Article  Google Scholar 

  • Thomas JC, Natarajan AR, Van der Ven A (2021) Comparing crystal structures with symmetry and geometry. NPJ Comput Mater 7(1):164

    Article  Google Scholar 

  • Ulusay R, Aydan Ö, Erguler ZA, Ngan-Tillard DJM, Seiki T, Verwaal W, Sasaki Y and Sato A (2015) ISRM suggested method for the needle penetration test. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014, 143–155

  • Vapnik V, Golowich S and Smola A (1996) Support vector method for function approximation, regression estimation and signal processing. Adv Neural Inf Process Syst 9

  • Wang H, Lei Z, Zhang X, Zhou B and Peng J (2016) Machine learning basics. Deep Learn 98–164

  • Zhang F and O'Donnell LJ (2020) Support vector regression. In: Machine learning (pp 123–140). Elsevier

  • Zhao S, Zhang T, Ma S, Chen M (2022) Dandelion Optimizer: a nature-inspired metaheuristic algorithm for engineering applications. Eng Appl Artif Intell 114:105075

    Article  Google Scholar 

  • Zhou Z-H (2021) Machine learning. Springer Nature

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rongjun You: writing—original draft preparation, conceptualization, supervision, project administration. Huijun Mao: methodology, software, validation, formal analysis.

Corresponding author

Correspondence to Rongjun You.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Test Dataset

Lp/D

Ls/Lr

N_SPT

UCS

Hr

Qu

14.77

7.43

157.66

59.86

0.00

17,518.25

5.42

1.71

140.15

62.73

0.00

15,693.43

49.90

1.20

0.00

0.00

1.2

10,360

14.61

5.71

119.71

34.53

0.00

32,481.75

10.96

4.57

140.15

57.55

0.00

32,116.79

31.56

19.43

21.90

29.93

0.00

41,605.84

46.36

8.36

0.00

0.00

8.36

9000

8.47

1.71

132.85

67.34

0.00

13,868.61

9.89

0.86

108.03

49.50

0.00

12,408.76

13.94

3.43

11.68

36.26

0.00

23,722.63

58.00

6.50

0.00

0.00

6.5

10,000

27.3

0.80

0.00

0.00

0.8

8000

55.96

8.08

0.00

0.00

8.08

7600

11.69

4.29

132.85

48.35

0.00

13,868.61

12.99

13.43

2.92

25.90

0.00

34,671.53

72.64

8.98

0.00

0.00

8.08

8073

22.81

0.52

0.00

0.00

0.62

12,006

4.33

0.29

160.58

62.73

0.00

25,547.45

14.03

3.14

124.09

35.11

0.00

24,452.55

20.26

17.14

7.30

28.20

0.00

36,496.35

17.33

3.43

102.19

35.68

0.00

16,058.39

28.29

27.43

10.22

28.20

0.00

34,306.57

13.04

4.86

148.91

28.78

0.00

24,817.52

22.15

2.00

5.84

33.38

0.00

19,708.03

7.51

1.14

128.47

48.92

0.00

25,182.48

11.88

2.00

141.61

59.28

0.00

17,518.25

28.87

22.57

10.22

41.44

0.00

39,781.02

38.14

1.06

0.00

0.00

1.38

13,500

68.08

1.50

0.00

0.00

1.2

6831

9.71

2.29

115.33

49.50

0.00

18,248.18

50.60

2.00

0.00

0.00

1.2

5500

34.77

0.50

0.00

0.00

0.5

8696

9.51

2.57

140.15

62.73

0.00

14,233.58

9.57

2.00

148.91

65.04

0.00

28,467.15

13.71

2.00

119.71

35.68

0.00

13,868.61

74.59

7.14

0.00

0.00

5

7452

29.10

1.67

0.00

0.00

1

1449

75.00

2.13

0.00

0.00

1.7

4761

28.05

24.00

23.36

25.32

0.00

34,671.53

9.87

3.14

90.51

40.86

0.00

19,343.07

12.97

2.57

113.87

42.59

0.00

39,416.06

25.00

1.50

0.00

0.00

1.5

6000

28.06

14.57

46.72

32.23

0.00

18,978.10

48.50

1.91

0.00

0.00

1.53

8400

47.85

1.50

0.00

0.00

1.2

8900

64.66

2.49

0.00

0.00

1.99

7000

49.80

1.25

0.00

0.00

1.5

10,000

7.89

1.14

144.53

64.46

0.00

20,072.99

8.17

2.57

134.31

59.86

0.00

18,613.14

80.32

0.91

0.00

0.00

1

13,041

27.31

1.11

0.00

0.00

1

10,350

47.91

1.09

0.00

0.00

1.2

14,000

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, R., Mao, H. Assessment of ultimate bearing capacity of rock-socketed piles using hybrid approaches. Multiscale and Multidiscip. Model. Exp. and Des. (2024). https://doi.org/10.1007/s41939-024-00425-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41939-024-00425-3

Keywords

Navigation