Skip to main content
Log in

A comparative investigation of magnetohydrodynamics slip \(F{e}_{3}{O}_{4}-{H}_{2}O\) and \(A{l}_{2}{O}_{3}-{H}_{2}O\) nanofluids flow and heat transfer over an unsteady vertically curved stretching surface

  • Original Paper
  • Published:
Multiscale and Multidisciplinary Modeling, Experiments and Design Aims and scope Submit manuscript

Abstract

This study investigates the impact of various shapes of \(F{e}_{3}{O}_{4}\) and \(A{l}_{2}{O}_{3}\) nanometers immersed in water \(({H}_{2}O)\) base fluid over an unsteady vertically curved stretching surface. The article also covers the effects of velocity slip and variable magnetohydrodynamics (MHD). The mathematical model is based on fundamental principles, specifically the conservation of mass, momentum, and energy. We have transformed the modeled governing partial differential equations into highly nonlinear ordinary differential equations using suitable similarity conversions. The BVP4C program in MATLAB is used to generate numerical solutions for significant physical parameters, which can be visualized as graphs. The bar graphs are also drawn to analyze the impact of physical emerging parameters on skin friction coefficient and Nusselt Numbers. The result is also validated by comparing the present results with the available literature and found to be in good accord. It has been found that the addition of \(F{e}_{3}{O}_{4}\) and \(A{l}_{2}{o}_{3}\) nanoparticles improves the thermal conductivity of the base fluid \({H}_{2}O\). This rise is more pronounced for platelet-shaped \(F{e}_{3}{O}_{4}\) nanoparticles. The shape and the size of the nanoparticles play a crucial role in the heat transfer mechanism. Furthermore, the brick-shaped \(A{l}_{2}{O}_{3}-{H}_{2}O\) nanofluid exhibits the lowest velocity, the greatest temperature, and the lowest skin friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(r,s,z\) :

Curvilinear coordinates

\(U\) :

Stretching velocity \([{{\text{ms}}}^{-1}]\)

\(k\) :

Thermal conductivity \(\left[{{\text{Wm}}}^{-1}{{\text{K}}}^{-1}\right]\)

\({C}_{p}\) :

Specific heat \([{{\text{Jkg}}}^{-1} {{\text{K}}}^{-1} ]\)

\(\kappa\) :

Slip parameter

\(S\) :

Unsteady parameter

\(M\) :

Magnetic parameter

\({B}_{0}\) :

Strength of magnetic field

\(T\) :

Fluid temperature \([{\text{K}}]\)

\(F{e}_{3}{O}_{4}\) :

Ferrous ferric oxide or Iron oxide

\(A{l}_{2}{O}_{3}\) :

Aluminum oxide

\({H}_{2}O\) :

Hydrogen oxide (water)

\(a, \alpha , L\) :

Positive dimensional constants \([{{\text{s}}}^{-1}]\)

\(\theta\) :

Non-dimensional temperature

\(\sigma\) :

Electrical conductivity \([{{\text{Sm}}}^{-1}]\)

\(\rho\) :

Density \([{{\text{kgm}}}^{-3}]\)

\(\alpha\) :

Thermal diffusivity

\(m\) :

Shape factor

R:

Radius of curvature

\({C}_{{f}_{s}}\) :

Local skin friction coefficient

\(N{u}_{s}\) :

Local Nusselt number

\(Gr\) :

Grashof number

\(K\) :

Curvature

\(Pr\) :

Prandtl number

\(\mu\) :

Dynamic viscosity \([{{\text{kgm}}}^{-1}{{\text{s}}}^{-1}]\)

\(u,v\) :

Components of velocity [\({{\text{ms}}}^{-1}\)]

\(P\) :

Pressure \([{{\text{kgm}}}^{-1}{{\text{s}}}^{-2}]\)

\(\phi\) :

Volumetric fraction

\(\eta\) :

Non-dimensional space variables

\(\tau\) :

Sheer stress \([{{\text{Nm}}}^{-2}]\)

\({q}_{w}\) :

Heat flux \([{{\text{Wm}}}^{-2}]\)

\(\nu\) :

Kinematic viscosity \([{{\text{m}}}^{2}{{\text{s}}}^{-1}]\)

BL:

Boundary layer

\(MHD\) :

Magnetohydrodynamic

\(nf, f\),ref:

Nanofluid, fluid, reference

\(s\) :

Solid nanoparticles

References

  • Abdulwahab MI, Thahab SM, Dhiaa AH (2016) Experimental study of thermophysical properties of TiO2 nanofluid. Iraqi J Chem Petrol Eng 17(2):1–6

    Article  Google Scholar 

  • Ahmad S, Ameer-Ahammad N, Naveed-Khan M, Algehyne EA, Tag-Eldin E, Gepreel KA, Guedri K (2022) and Galal AM (2022) Thermal and solutal energy transport analysis in entropy generation of hybrid nanofluid flow over a vertically rotating cylinder. Front Phys. https://doi.org/10.3389/fphy.2022.988407

    Article  Google Scholar 

  • Bhattacharyya K, Layek GC (2014) Magnetohydrodynamic boundary layer flow of nanofluid over an exponentially stretching permeable sheet. Phys Res Int 2014:1–12

    Article  Google Scholar 

  • Bibi S, Elahi Z, Shahzad S (2020) Impacts of different shapes of nanoparticles on SiO2 nanofluid flow and heat transfer in a liquid film over a stretching sheet. AJP 95(11):115217

    Google Scholar 

  • Buongiorno J (2006) Convective transport in nanofluids. J Heat Transfer 128(3):240–250

    Article  Google Scholar 

  • Choi SUS, and Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. No. ANL/MSD/CP-84938; CONF-951135-29. Argonne National Lab.(ANL), Argonne, IL (United States)

  • Crane LJ (1970) Flow past a stretching plate. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 21:645–647

    Article  Google Scholar 

  • Hayat AU, Ullah I, Khan H, Weera W, Galal AM (2022) Numerical simulation of entropy optimization in radiative hybrid nanofluid flow in a variable features darcy-forchheimer curved surface. Symmetry 14(10):2057

    Article  Google Scholar 

  • Hayat AU, Ullah I, Khan H, Alam MM, Hassan AM, Khan H (2023) Numerical analysis of radiative hybrid nanomaterials flow across a permeable curved surface with inertial and Joule heating characteristics. Heliyon 9(11):e21452

    Article  Google Scholar 

  • Hayat U, Shaiq S, Shahzad A, Khan R, Kamran M, Shah NA (2023) The effect of particle shape on flow and heat transfer of ag-nanofluid along stretching surface. Chin J Phys 85:708–721

    Article  MathSciNet  Google Scholar 

  • Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53(11–12):2477–2483

    Article  Google Scholar 

  • Khan MN, Akkurt N, Ahammad NA, Ahmad S, Amari A, Eldin SM, Pasha AA (2022a) Irreversibility analysis of Ellis hybrid nanofluid with surface catalyzed reaction and multiple slip effects on a horizontal porous stretching cylinder. Arab J Chem 15(12):104326

    Article  Google Scholar 

  • Khan N, Shafiq Ahmad M, Ameer Ahammad N, Alqahtani T and Algarni S (2022b) Numerical investigation of hybrid nanofluid with gyrotactic microorganism and multiple slip conditions through a porous rotating disk. Waves in Random and Complex Media 1–16

  • Kierzenka J (1998) Studies in the numerical solution of ordinary differential equations, PhD Thesis, Southern Methodist University, Dallas, TX

  • Kole M, Dey TK (2013) Enhanced thermophysical properties of copper nanoparticles dispersed in gear oil. Appl Thermal Eng 56(1–2):45–53

    Article  Google Scholar 

  • Kuznetsov AV, Nield DA (2014) Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int J Therm Sci 77:126–129

    Article  Google Scholar 

  • Li Y-M, Ullah I, Alam MM, Khan H, Aziz A (2022) Lorentz force and Darcy-Forchheimer effects on the convective flow of non-Newtonian fluid with chemical aspects. Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2063984

    Article  Google Scholar 

  • Mahapatra TR, Gupta AS (2003) Stagnation-point flow towards a stretching surface. Can J Chem Eng 81:258–263

    Article  Google Scholar 

  • Makinde OD, Khan ZH, Ahmad R, Khan WA (2018) Numerical study of unsteady hydromagnetic radiating fluid flow past a slippery stretching sheet embedded in a porous medium. Phys Fluids 30(8):083601

    Article  Google Scholar 

  • Maraj EN, Iqbal Z, Shaiq S (2018a) Extraordinary role of hydrogen possessions and viscosity variation in electrically conducting copper and silver nanoparticles inspired by mixed convection. Int J Hydro Energy 43(24):10915–10925

    Article  Google Scholar 

  • Maraj EN, Shaiq S, Iqbal Z (2018b) Assessment of hexahedron and lamina shaped graphene oxide nanoparticles suspended in ethylene and propylene glycol influenced by internal heat generation and thermal deposition. J Mol Liquids 262:275–284

    Article  Google Scholar 

  • Naveed M, Abbas Z, Sajid M (2016) Hydromagnetic flow over an unsteady curved stretching surface. Eng Sci Technol Int J 19(2):841–845

    Google Scholar 

  • Navier CLMH (1823) Mémoire sur les lois du mouvement des fluides. Mémoires De L’académie Royale Des Sciences De L’institut De France 6(1823):389–440

    Google Scholar 

  • Nguyen MD, Tran H-V, Xu S, Lee TR (2021) Fe3O4 nanoparticles: structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Appl Sci 11(23):11301

    Article  Google Scholar 

  • Qin L, Ahmad S, Khan MN, Ahammad NA, Gamaoun F, Galal AM (2022) Thermal and solutal transport analysis of Blasius–Rayleigh–Stokes flow of hybrid nanofluid with convective boundary conditions. Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2072018

    Article  Google Scholar 

  • Saidur R, Leong KY, Mohammed HA (2011) A review on applications and challenges of nanofluids. Renew Sustain Energy Rev 15(3):1646–1668

    Article  Google Scholar 

  • Sakiadis BC (1961) Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J 7(1):26–28

    Article  Google Scholar 

  • Saranya S, Ragupathi P, Al-Mdallal Q (2022a) Analysis of bio-convective heat transfer over an unsteady curved stretching sheet using the shifted Legendre collocation method. Case Stud Thermal Eng 39:102433

    Article  Google Scholar 

  • Saranya S, Baranyi L, Al-Mdallal QM (2022b) Free convection flow of hybrid ferrofluid past a heated spinning cone. Thermal Sci Eng Progress 32:101335

    Article  Google Scholar 

  • Shahzad A, Liaqat F, Ellahi Z, Sohail M, Ayub M, Ali MR (2022) Thin film flow and heat transfer of Cu-nanofluids with slip and convective boundary condition over a stretching sheet. Sci Rep 12(1):14254

    Article  Google Scholar 

  • Shaiq S, Maraj EN (2019) Role of the induced magnetic field on dispersed CNTs in propylene glycol transportation toward a curved surface. Arab J Sci Eng 44(9):7515–7528

    Article  Google Scholar 

  • Shaiq S, Maraj EN, Mehmood R, Ijaz S (2022) Magnetohydrodynamics radiative dissipative slip flow of hydrogen-oxide (H2O) infused with various shape tungsten, tin, titanium (nanometer) particles over a nonlinear radial stretching surface. Proc Inst Mech Engineers Part E 236(3):953–963

    Article  Google Scholar 

  • Shaiq S, Maraj EN, Shahzad A (2023) An unsteady instigated induced magnetic field’s influence on the axisymmetric stagnation point flow of various shaped copper and silver nanomaterials submerged in ethylene glycol over an unsteady radial stretching sheet. Numer Heat Transfer Part A. https://doi.org/10.1080/10407782.2023.2193351

    Article  Google Scholar 

  • Shampine LF, Kierzenka J, Reichelt MW (2000) Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutor Notes 2000:1–27

    Google Scholar 

  • Suriya Uma Devi S, Anjali-Devi SP (2016) Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can J Phys 94(5):490–496

    Article  Google Scholar 

  • Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transfer 50(9–10):2002–2018

    Article  Google Scholar 

  • Ullah I (2022a) Activation energy with exothermic/endothermic reaction and Coriolis force effects on magnetized nanomaterials flow through Darcy-Forchheimer porous space with variable features. Waves Random Complex Media. https://doi.org/10.1080/17455030.2021.2023779

    Article  Google Scholar 

  • Ullah I (2022b) Heat transfer enhancement in Marangoni convection and nonlinear radiative flow of gasoline oil conveying Boehmite alumina and aluminum alloy nanoparticles. Int Commun Heat Mass Transfer 132:105920

    Article  Google Scholar 

  • Ullah I, Hayat T, Alsaedi A (2022) Optimization of entropy production in flow of hybrid nanomaterials through Darcy-Forchheimer porous space. J Therm Anal Calorim 147(10):5855–5864

    Article  Google Scholar 

  • Ullah S, Ullah I, Ali A (2023a) Soret and Dufour effects on dissipative Jeffrey nanofluid flow over a curved surface with nonlinear slip, activation energy, and entropy generation. Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2164380

    Article  Google Scholar 

  • Ullah I, Alam MM, Shah MI, Weera W (2023b) Marangoni convection in dissipative flow of nanofluid through porous space. Sci Rep 13(1):6287

    Article  Google Scholar 

  • Ullah I, Shukat S, Albakri A, Khan H, Galal AM, Jamshed W (2023c) Thermal performance of aqueous alumina–titania hybrid nanomaterials dispersed in rotating channel. Int J Modern Phys B 37:2350237

    Article  Google Scholar 

  • Xia W-F, Ahmad S, Naveed-Khan M, Ahmad H, Rehman A, Baili J, Gia TN (2022) Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions. Case Stud Thermal Eng 32:101893

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Shakil Shaiq Modled the Problem and also wrote the discussion section. Azeem Shahzad wrote the Introduction Section and Numerical Procedure. Umer Hayat Prepared all the Figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shakil Shaiq.

Ethics declarations

Conflict of interest

The authors state that there are no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaiq, S., Shahzad, A. & Hayat, U. A comparative investigation of magnetohydrodynamics slip \(F{e}_{3}{O}_{4}-{H}_{2}O\) and \(A{l}_{2}{O}_{3}-{H}_{2}O\) nanofluids flow and heat transfer over an unsteady vertically curved stretching surface. Multiscale and Multidiscip. Model. Exp. and Des. (2024). https://doi.org/10.1007/s41939-023-00352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41939-023-00352-9

Keywords

Navigation