Skip to main content

Advertisement

Log in

Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Compared with commercial Li-ion cathode materials (LiCoO2, LiFePO4, NMC111, etc.), Li-rich Mn-based cathode materials (LMR-NMCs) possess higher capacities of more than 250 mAh g−1 and have attracted great interest from researchers as promising candidates for long-endurance electric vehicles. However, unsolved problems need to be addressed before commercialization with one being voltage decay during cycling. Here, researchers have proposed that the mechanisms of voltage decay in Li-rich Mn-based cathode materials involve factors such as surface phase transformation, anion redox and oxygen release and have found evidence of transition metal-migration, microstructural defects caused by LMR and other phenomena using advanced characterization techniques. As a result, many studies have been conducted to resolve voltage decay in LMR-NMCs for practical application. Based on this, this article will systematically review the progress in the study of voltage decay mechanisms in LMR materials and provide suggestions for further research.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted with permission from [5]. Copyright 2015 Elsevier B.V

Fig. 2

Adapted with permission from [28]. Copyright 2016 Macmillan Publishers Limited

Fig. 3

Copyright the Royal Society of Chemistry 2011

Fig. 4

Reprinted with permission from [31]. Copyright 2012 American Chemical Society

Fig. 5
Fig. 6

Adapted with permission from [37]. Copyright 2018, Springer Nature

Fig. 7
Fig. 8

Adapted with permission from [42]. Copyright 2014 American Chemical Society

Fig. 9

Adapted with permission from [43]. Copyright 2018 American Chemical Society

Fig. 10

Adapted with permission from [59]. Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 11

Adapted with permission from [83]. Copyright 2018 Springer Nature

Fig. 12

Adapted with permission from [88]. Copyright the Royal Society of Chemistry 2016

Fig. 13
Fig. 14

Adapted with permission from [96]. Copyright 2013 American Chemical Society

Similar content being viewed by others

References

  1. Thackeray, M.M., Kang, S.H., Johnson, C.S., et al.: Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–3125 (2007). https://doi.org/10.1039/b702425h

    Article  CAS  Google Scholar 

  2. Hu, E.Y., Lyu, Y.C., Xin, H.L., et al.: Explore the effects of microstructural defects on voltage fade of Li- and Mn-rich cathodes. Nano Lett. 16, 5999–6007 (2016). https://doi.org/10.1021/acs.nanolett.6b01609

    Article  CAS  PubMed  Google Scholar 

  3. Rossouw, M.H., Thackeray, M.M.: Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications. Mater. Res. Bull. 26, 463–473 (1991). https://doi.org/10.1016/0025-5408(91)90186-p

    Article  CAS  Google Scholar 

  4. Jarvis, K.A., Deng, Z.Q., Allard, L.F., et al.: Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem. Mater. 23, 3614–3621 (2011). https://doi.org/10.1021/cm200831c

    Article  CAS  Google Scholar 

  5. Lee, S.H., Moon, J.S., Lee, M.S., et al.: Enhancing phase stability and kinetics of lithium-rich layered oxide for an ultra-high performing cathode in Li-ion batteries. J. Power Sources 281, 77–84 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.158

    Article  CAS  Google Scholar 

  6. Yu, H.J., Ishikawa, R., So, Y.G., et al.: Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew. Chem. Int. Ed. 52, 5969–5973 (2013). https://doi.org/10.1002/anie.201301236

    Article  CAS  Google Scholar 

  7. Thackeray, M.M., Kang, S.H., Johnson, C.S., et al.: Comments on the structural complexity of lithium-rich Li1+xM1–xO2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem. Commun. 8, 1531–1538 (2006). https://doi.org/10.1016/j.elecom.2006.06.030

    Article  CAS  Google Scholar 

  8. Armstrong, A.R., Holzapfel, M., Novák, P., et al.: Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 128, 8694–8698 (2006). https://doi.org/10.1021/ja062027+

    Article  CAS  PubMed  Google Scholar 

  9. Lei, C.H., Bareño, J., Wen, J.G., et al.: Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy. J. Power Sources 178, 422–433 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.077

    Article  CAS  Google Scholar 

  10. Bareño, J., Lei, C.H., Wen, J.G., et al.: Local structure of layered oxide electrode materials for lithium-ion batteries. Adv. Mater. 22, 1122–1127 (2010). https://doi.org/10.1002/adma.200904247

    Article  CAS  PubMed  Google Scholar 

  11. Johnson, C.S., Kim, J.S., Lefief, C., et al.: The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1–x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 6, 1085–1091 (2004). https://doi.org/10.1016/j.elecom.2004.08.002

    Article  CAS  Google Scholar 

  12. Zheng, J.M., Zhang, Z.R., Wu, X.B., et al.: The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery. J. Electrochem. Soc. 155, A775–A782 (2008). https://doi.org/10.1149/1.2966694

    Article  CAS  Google Scholar 

  13. Fell, C.R., Qian, D.N., Carroll, K.J., et al.: Correlation between oxygen vacancy, microstrain, and cation distribution in lithium-excess layered oxides during the first electrochemical cycle. Chem. Mater. 25, 1621–1629 (2013). https://doi.org/10.1021/cm4000119

    Article  CAS  Google Scholar 

  14. Qian, D.N., Xu, B., Chi, M.F., et al.: Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys. Chem. Chem. Phys. 16, 14665–14668 (2014). https://doi.org/10.1039/c4cp01799d

    Article  CAS  PubMed  Google Scholar 

  15. Berkes, B.B., Jozwiuk, A., Vračar, M., et al.: Online continuous flow differential electrochemical mass spectrometry with a realistic battery setup for high-precision, long-term cycling tests. Anal. Chem. 87, 5878–5883 (2015). https://doi.org/10.1021/acs.analchem.5b01237

    Article  CAS  PubMed  Google Scholar 

  16. Koga, H., Croguennec, L., Ménétrier, M., et al.: Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li ion batteries. J. Phys. Chem. C 118, 5700–5709 (2014). https://doi.org/10.1021/jp412197z

    Article  CAS  Google Scholar 

  17. Oishi, M., Yogi, C., Watanabe, I., et al.: Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2. J. Power Sources 276, 89–94 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.104

    Article  CAS  Google Scholar 

  18. Han, S.J., Xia, Y.G., Wei, Z., et al.: A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2, Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge-discharge. J. Mater. Chem. A 3, 11930–11939 (2015). https://doi.org/10.1039/c5ta02161h

    Article  CAS  Google Scholar 

  19. Sathiya, M., Rousse, G., Ramesha, K., et al.: Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013)

    Article  CAS  Google Scholar 

  20. McCalla, E., Abakumov, A.M., Saubanere, M., et al.: Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015). https://doi.org/10.1126/science.aac8260

    Article  CAS  PubMed  Google Scholar 

  21. Li, X., Qiao, Y., Guo, S.H., et al.: Direct visualization of the reversible O2–/O redox process in Li-rich cathode materials. Adv. Mater. 30, 1705197 (2018). https://doi.org/10.1002/adma.201705197

    Article  CAS  Google Scholar 

  22. Koga, H., Croguennec, L., Ménétrier, M., et al.: Different oxygen redox participation for bulk and surface: a possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. J. Power Sources 236, 250–258 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.075

    Article  CAS  Google Scholar 

  23. Koga, H., Croguennec, L., Ménétrier, M., et al.: Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J. Electrochem. Soc. 160, A786–A792 (2013)

    Article  CAS  Google Scholar 

  24. Luo, K., Roberts, M.R., Guerrini, N., et al.: Anion redox chemistry in the cobalt free 3d transition metal oxide intercalation electrode Li[Li0.2Ni0.2Mn0.6]O2. J. Am. Chem. Soc. 138, 11211–11218 (2016). https://doi.org/10.1021/jacs.6b05111

    Article  CAS  PubMed  Google Scholar 

  25. Luo, K., Roberts, M.R., Hao, R., et al.: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016). https://doi.org/10.1038/nchem.2471

    Article  CAS  PubMed  Google Scholar 

  26. Yang, W.L.: Oxygen release and oxygen redox. Nat. Energy 3, 619–620 (2018). https://doi.org/10.1038/s41560-018-0222-0

    Article  CAS  Google Scholar 

  27. Li, B., Xia, D.G.: Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054 (2017). https://doi.org/10.1002/adma.201701054

    Article  CAS  Google Scholar 

  28. Seo, D.H., Lee, J., Urban, A., et al.: The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016). https://doi.org/10.1038/nchem.2524

    Article  CAS  PubMed  Google Scholar 

  29. Li, B., Jiang, N., Huang, W.F., et al.: Thermodynamic activation of charge transfer in anionic redox process for Li-ion batteries. Adv. Funct. Mater. 28, 1704864 (2018). https://doi.org/10.1002/adfm.201704864

    Article  CAS  Google Scholar 

  30. Xu, B., Fell, C.R., Chi, M.F., et al.: Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ. Sci. 4, 2223–2233 (2011). https://doi.org/10.1039/c1ee01131f

    Article  CAS  Google Scholar 

  31. Gu, M., Belharouak, I., Zheng, J., et al.: Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760–767 (2013)

    Article  CAS  Google Scholar 

  32. Zheng, J.M., Xu, P.H., Gu, M., et al.: Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem. Mater. 27, 1381–1390 (2015). https://doi.org/10.1021/cm5045978

    Article  CAS  Google Scholar 

  33. Boulineau, A., Simonin, L., Colin, J.F., et al.: First evidence of manganese–nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett. 13, 3857–3863 (2013). https://doi.org/10.1021/nl4019275

    Article  CAS  PubMed  Google Scholar 

  34. Reed, J., Ceder, G.: Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem. Rev. 104, 4513–4534 (2004). https://doi.org/10.1021/cr020733x

    Article  CAS  PubMed  Google Scholar 

  35. Mohanty, D., Li, J.L., Abraham, D.P., et al.: Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem. Mater. 26, 6272–6280 (2014). https://doi.org/10.1021/cm5031415

    Article  CAS  Google Scholar 

  36. Sathiya, M., Abakumov, A.M., Foix, D., et al.: Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015). https://doi.org/10.1038/nmat4137

    Article  CAS  PubMed  Google Scholar 

  37. Hu, E.Y., Yu, X.Q., Lin, R.Q., et al.: Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018). https://doi.org/10.1038/s41560-018-0207-z

    Article  CAS  Google Scholar 

  38. Zheng, J.M., Li, J., Zhang, Z.R., et al.: The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ion. 179, 1794–1799 (2008). https://doi.org/10.1016/j.ssi.2008.01.091

    Article  CAS  Google Scholar 

  39. Wu, Y., Manthiram, A.: Effect of surface modifications on the layered solid solution cathodes (1−z) Li[Li1/3Mn2/3]O2-zLi[Mn0.5−yNi0.5−yCo2y]O2. Solid State Ion. 180, 50–56 (2009). https://doi.org/10.1016/j.ssi.2008.11.002

    Article  CAS  Google Scholar 

  40. Zhao, Y.J., Zhao, C.S., Feng, H.L., et al.: Enhanced electrochemical performance of Li[Li0.2Ni0.2Mn0.6]O2 modified by manganese oxide coating for lithium-ion batteries. Electrochem. Solid State Lett. 14, A1–A5 (2011). https://doi.org/10.1149/1.3496402

    Article  CAS  Google Scholar 

  41. He, H.B., Zan, L., Zhang, Y.X.: Effects of amorphous V2O5 coating on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion batteries. J. Alloys Compd. 680, 95–104 (2016). https://doi.org/10.1016/j.jallcom.2016.04.115

    Article  CAS  Google Scholar 

  42. Zheng, J.M., Gu, M., Xiao, J., et al.: Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem. Mater. 26, 6320–6327 (2014). https://doi.org/10.1021/cm502071h

    Article  CAS  Google Scholar 

  43. Shang, H.F., Ning, F.H., Li, B., et al.: Suppressing voltage decay of a lithium-rich cathode material by surface enrichment with atomic ruthenium. ACS Appl. Mater. Interfaces 10, 21349–21355 (2018). https://doi.org/10.1021/acsami.8b06271

    Article  CAS  PubMed  Google Scholar 

  44. Liu, S., Liu, Z., Shen, X., et al.: Surface doping to enhance structural integrity and performance of Li-rich layered oxide. Adv. Energy Mater. 8, 1802105 (2018). https://doi.org/10.1002/aenm.201802105

    Article  CAS  Google Scholar 

  45. Wu, F., Li, Q., Bao, L.Y., et al.: Role of LaNiO3 in suppressing voltage decay of layered lithium-rich cathode materials. Electrochim. Acta 260, 986–993 (2018). https://doi.org/10.1016/j.electacta.2017.12.034

    Article  CAS  Google Scholar 

  46. Li, J.G., Li, J.L., Yu, T.H., et al.: Stabilizing the structure and suppressing the voltage decay of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for Li-ion batteries via multifunctional Pr oxide surface modification. Ceram. Int. 42, 18620–18630 (2016). https://doi.org/10.1016/j.ceramint.2016.08.206

    Article  CAS  Google Scholar 

  47. Chong, S.K., Chen, Y.Z., Yan, W.W., et al.: Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries. J. Power Sources 332, 230–239 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.028

    Article  CAS  Google Scholar 

  48. Ding, F.X., Li, J.L., Deng, F.H., et al.: Surface heterostructure induced by PrPO4 modification in Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for high-performance lithium-ion batteries with mitigating voltage decay. ACS Appl. Mater. Inter. 9, 27936–27945 (2017). https://doi.org/10.1021/acsami.7b07221

    Article  CAS  Google Scholar 

  49. Qiao, Q.Q., Zhang, H.Z., Li, G.R., et al.: Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li-Mn-PO4 as the cathode for lithium-ion batteries. J. Mater. Chem. A 1, 5262–5268 (2013). https://doi.org/10.1039/c3ta00028a

    Article  CAS  Google Scholar 

  50. He, L., Xu, J.M., Han, T., et al.: SmPO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced cycling stability for lithium ion batteries. Ceram. Int. 43, 5267–5273 (2017). https://doi.org/10.1016/j.ceramint.2017.01.052

    Article  CAS  Google Scholar 

  51. Liu, W., Oh, P., Liu, X.E., et al.: Countering voltage decay and capacity fading of lithium-rich cathode material at 60 °C by hybrid surface protection layers. Adv. Energy Mater. 5, 1500274 (2015). https://doi.org/10.1002/aenm.201500274

    Article  CAS  Google Scholar 

  52. Qiu, B., Zhang, M.H., Wu, L.J., et al.: Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016). https://doi.org/10.1038/ncomms12108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, F., Li, W.K., Chen, L., et al.: Simultaneously fabricating homogeneous nanostructured ionic and electronic pathways for layered lithium-rich oxides. J. Power Sources 402, 499–505 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.074

    Article  CAS  Google Scholar 

  54. Ning, F.H., Shang, H.F., Li, B., et al.: Surface thermodynamic stability of Li-rich Li2MnO3: effect of defective graphene. Energy Storage Mater. (2019). https://doi.org/10.1016/j.ensm.2019.01.004

    Article  Google Scholar 

  55. Yang, M.C., Hu, B., Geng, F.S., et al.: Mitigating voltage decay in high-capacity Li1.2Ni0.2Mn0.6O2 cathode material by surface K+ doping. Electrochim. Acta 291, 278–286 (2018). https://doi.org/10.1016/j.electacta.2018.09.134

    Article  CAS  Google Scholar 

  56. Yan, W.W., Liu, Y.N., Guo, S.W., et al.: Effect of defects on decay of voltage and capacity for Li[Li0.15Ni0.2Mn0.6]O2 cathode material. ACS Appl. Mater. Inter. 8, 12118–12126 (2016). https://doi.org/10.1021/acsami.6b00763

    Article  CAS  Google Scholar 

  57. Zheng, F.H., Yang, C.H., Xiong, X.H., et al.: Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew. Chem. Int. Ed. 54, 13058–13062 (2015). https://doi.org/10.1002/anie.201506408

    Article  CAS  Google Scholar 

  58. Li, Q.Y., Zhou, D., Zhang, L.J., et al.: Lithium-ion batteries: tuning anionic redox activity and reversibility for a high-capacity Li-rich Mn-based oxide cathode via an integrated strategy (adv. funct. mater. 10/2019). Adv. Funct. Mater. 29, 1970064 (2019). https://doi.org/10.1002/adfm.201970064

    Article  CAS  Google Scholar 

  59. Li, B., Yan, H.J., Ma, J., et al.: Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: towards better electrochemical performance. Adv. Funct. Mater. 24, 5112–5118 (2014). https://doi.org/10.1002/adfm.201400436

    Article  CAS  Google Scholar 

  60. Zhang, H.Z., Qiao, Q.Q., Li, G.R., et al.: PO4 3– polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries. J. Mater. Chem. A 2, 7454–7460 (2014). https://doi.org/10.1039/c4ta00699b

    Article  CAS  Google Scholar 

  61. Zhao, Y., Liu, J.T., Wang, S.B., et al.: Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: implications for enhanced electrochemical performance. Adv. Funct. Mater. 26, 4760–4767 (2016). https://doi.org/10.1002/adfm.201600576

    Article  CAS  Google Scholar 

  62. Knight, J.C., Nandakumar, P., Kan, W.H., et al.: Effect of Ru substitution on the first charge-discharge cycle of lithium-rich layered oxides. J. Mater. Chem. A 3, 2006–2011 (2015). https://doi.org/10.1039/c4ta05178e

    Article  CAS  Google Scholar 

  63. Chen, H., Hu, Q.Y., Huang, Z.M., et al.: Synthesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery. Ceram. Int. 42, 263–269 (2016). https://doi.org/10.1016/j.ceramint.2015.08.104

    Article  CAS  Google Scholar 

  64. Dahiya, P.P., Ghanty, C., Sahoo, K., et al.: Suppression of voltage decay and improvement in electrochemical performance by zirconium doping in Li-rich cathode materials for Li-ion batteries. J. Electrochem. Soc. 165, A3114–A3124 (2018). https://doi.org/10.1149/2.0751813jes

    Article  CAS  Google Scholar 

  65. Wang, Y.Q., Yang, Z.Z., Qian, Y.M., et al.: New insights into improving rate performance of lithium-rich cathode material. Adv. Mater. 27, 3915–3920 (2015). https://doi.org/10.1002/adma.201500956

    Article  CAS  PubMed  Google Scholar 

  66. Li, Q., Li, G.S., Fu, C.C., et al.: K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 10330–10341 (2014). https://doi.org/10.1021/am5017649

    Article  CAS  PubMed  Google Scholar 

  67. Li, H.M., Guo, H.J., Wang, Z.X., et al.: Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes by chromium doping. Int. J. Hydrog. Energy 43, 11109–11119 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.203

    Article  CAS  Google Scholar 

  68. Liu, Y.J., Zhang, Z.Q., Gao, Y.Y., et al.: Mitigating the voltage decay and improving electrochemical properties of layered-spinel Li1.1Ni0.25Mn0.75O2.3 cathode material by Cr doping. J. Alloy. Compd. 657, 37–43 (2016). https://doi.org/10.1016/j.jallcom.2015.10.060

    Article  CAS  Google Scholar 

  69. Ma, Q.X., Li, R.H., Zheng, R.J., et al.: Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen. J. Power Sources 331, 112–121 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.137

    Article  CAS  Google Scholar 

  70. Nayak, P.K., Grinblat, J., Levi, M., et al.: Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries. J. Solid State Electrochem. 19, 2781–2792 (2015). https://doi.org/10.1007/s10008-015-2790-2

    Article  CAS  Google Scholar 

  71. Yu, R.Z., Wang, G., Liu, M.H., et al.: Mitigating voltage and capacity fading of lithium-rich layered cathodes by lanthanum doping. J. Power Sources 335, 65–75 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.042

    Article  CAS  Google Scholar 

  72. Li, L., Song, B.H., Chang, Y.L., et al.: Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J. Power Sources 283, 162–170 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.085

    Article  CAS  Google Scholar 

  73. Yan, H.J., Li, B., Yu, Z., et al.: First-principles study: tuning the redox behavior of lithium-rich layered oxides by chlorine doping. J. Phys. Chem. C 121, 7155–7163 (2017). https://doi.org/10.1021/acs.jpcc.7b01168

    Article  CAS  Google Scholar 

  74. Koenig Jr., G.M., Belharouak, I., Deng, H., et al.: Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials. Chem. Mater. 23, 1954–1963 (2011). https://doi.org/10.1021/cm200058c

    Article  CAS  Google Scholar 

  75. Sun, Y.K., Chen, Z., Noh, H.J., et al.: Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012). https://doi.org/10.1038/nmat3435

    Article  CAS  PubMed  Google Scholar 

  76. Zheng, J.M., Gu, M., Genc, A., et al.: Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 14, 2628–2635 (2014). https://doi.org/10.1021/nl500486y

    Article  CAS  PubMed  Google Scholar 

  77. Wu, B., Yang, X.K., Jiang, X., et al.: Synchronous tailoring surface structure and chemical composition of Li-rich-layered oxide for high-energy lithium-ion batteries. Adv. Funct. Mater. 28, 1803392 (2018). https://doi.org/10.1002/adfm.201803392

    Article  CAS  Google Scholar 

  78. Wang, D.P., Belharouak, I., Zhou, G.W., et al.: Nanoarchitecture multi-structural cathode materials for high capacity lithium batteries. Adv. Funct. Mater. 23, 1070–1075 (2013). https://doi.org/10.1002/adfm.201200536

    Article  CAS  Google Scholar 

  79. Wu, F., Li, N., Su, Y.F., et al.: Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv. Mater. 25, 3722–3726 (2013). https://doi.org/10.1002/adma.201300598

    Article  CAS  PubMed  Google Scholar 

  80. Luo, D., Li, G.S., Fu, C.C., et al.: A new spinel-layered Li-rich microsphere as a high-rate cathode material for Li-ion batteries. Adv. Energy Mater. 4, 1400062 (2014). https://doi.org/10.1002/aenm.201400062

    Article  CAS  Google Scholar 

  81. Pei, Y., Xu, C.Y., Xiao, Y.C., et al.: Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties. Adv. Funct. Mater. 27, 1604349 (2017). https://doi.org/10.1002/adfm.201604349

    Article  CAS  Google Scholar 

  82. Myeong, S., Cho, W., Jin, W., et al.: Understanding voltage decay in lithium-excess layered cathode materials through oxygen-centred structural arrangement. Nat. Commun. 9, 3285 (2018). https://doi.org/10.1038/s41467-018-05802-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Singer, A., Zhang, M., Hy, S., et al.: Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018). https://doi.org/10.1038/s41560-018-0184-2

    Article  CAS  Google Scholar 

  84. Xu, Y.H., Hu, E.Y., Yang, F.F., et al.: Structural integrity: searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques. Nano Energy 28, 164–171 (2016). https://doi.org/10.1016/j.nanoen.2016.08.039

    Article  CAS  Google Scholar 

  85. Kim, H., Kim, M.G., Jeong, H.Y., et al.: A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Lett. 15, 2111–2119 (2015). https://doi.org/10.1021/acs.nanolett.5b00045

    Article  CAS  PubMed  Google Scholar 

  86. Oh, P., Myeong, S., Cho, W., et al.: Superior long-term energy retention and volumetric energy density for Li-rich cathode materials. Nano Lett. 14, 5965–5972 (2014). https://doi.org/10.1021/nl502980k

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, L.J., Li, N., Wu, B.R., et al.: Sphere-shaped hierarchical cathode with enhanced growth of nanocrystal planes for high-rate and cycling-stable Li-ion batteries. Nano Lett. 15, 656–661 (2015). https://doi.org/10.1021/nl5041594

    Article  CAS  PubMed  Google Scholar 

  88. Li, Y., Bai, Y., Wu, C., et al.: Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. J. Mater. Chem. A 4, 5942–5951 (2016). https://doi.org/10.1039/c6ta00460a

    Article  CAS  Google Scholar 

  89. Luo, D., Shi, P., Fang, S.H., et al.: Unraveling the effect of exposed facets on voltage decay and capacity fading of Li-rich layered oxides. J. Power Sources 364, 121–129 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.078

    Article  CAS  Google Scholar 

  90. He, X., Wang, J., Wang, R., et al.: A 3D porous Li-rich cathode material with an in situ modified surface for high performance lithium ion batteries with reduced voltage decay. J. Mater. Chem. A 4, 7230–7237 (2016). https://doi.org/10.1039/c6ta01448h

    Article  CAS  Google Scholar 

  91. Zhang, Y., Zhang, W.S., Shen, S.Y., et al.: Hollow porous bowl-shaped lithium-rich cathode material for lithium-ion batteries with exceptional rate capability and stability. J. Power Sources 380, 164–173 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.084

    Article  CAS  Google Scholar 

  92. Paulsen, J.M.: Layered Li-Mn-oxide with the O2 structure: a cathode material for Li-ion cells which does not convert to spinel. J. Electrochem. Soc. 146, 3560 (1999). https://doi.org/10.1149/1.1392514

    Article  CAS  Google Scholar 

  93. Zuo, Y.X., Li, B., Jiang, N., et al.: A high-capacity O2-Type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv. Mater. 30, 1707255 (2018). https://doi.org/10.1002/adma.201707255

    Article  CAS  Google Scholar 

  94. Assat, G., Foix, D., Delacourt, C., et al.: Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017). https://doi.org/10.1038/s41467-017-02291-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dreyer, W., Jamnik, J., Guhlke, C., et al.: The thermodynamic origin of hysteresis in insertion batteries. Nat. Mater. 9, 448–453 (2010). https://doi.org/10.1038/nmat2730

    Article  CAS  PubMed  Google Scholar 

  96. Croy, J.R., Gallagher, K.G., Balasubramanian, M., et al.: Examining hysteresis in composite xLi2MnO3 (1–x)LiMO2 cathode structures. J. Phys. Chem. C 117, 6525–6536 (2013). https://doi.org/10.1021/jp312658q

    Article  CAS  Google Scholar 

  97. Croy, J.R., Balasubramanian, M., Gallagher, K.G., et al.: Review of the US department of energy’s “deep dive” effort to understand voltage fade in Li- and Mn-rich cathodes. Acc. Chem. Res. 48, 2813–2821 (2015). https://doi.org/10.1021/acs.accounts.5b00277

    Article  CAS  PubMed  Google Scholar 

  98. Dogan, F., Long, B.R., Croy, J.R., et al.: Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes. J. Am. Chem. Soc. 137, 2328–2335 (2015). https://doi.org/10.1021/ja511299y

    Article  CAS  PubMed  Google Scholar 

  99. Gallagher, K.G., Croy, J.R., Balasubramanian, M., et al.: Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes. Electrochem. Commun. 33, 96–98 (2013). https://doi.org/10.1016/j.elecom.2013.04.022

    Article  CAS  Google Scholar 

  100. Kim, J.H., Park, M.S., Song, J.H., et al.: Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 composite material. J. Alloys Compd. 517, 20–25 (2012). https://doi.org/10.1016/j.jallcom.2011.11.117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Municipal Natural Science Foundation (No. 2181001), the National Natural Science Foundation of China (Nos. 51671004 and U1764255) and the National Key Research and Development Program (2016YFB0100200). All sources of support for this work are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingguo Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Li, B., Zuo, Y. et al. Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials. Electrochem. Energ. Rev. 2, 606–623 (2019). https://doi.org/10.1007/s41918-019-00049-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00049-z

Keywords

Navigation