Skip to main content
Log in

Enhancing the predictive capability of a mathematical model for pseudomonas aeruginosa through artificial neural networks

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

This paper talks about a type of bacterium called Pseudomonas Aeruginosa (PA) that can infect vulnerable people and can affect hospitals despite years of research. Its distinctive trait that increases the bacteria's infectiousness is because of Quorum Sensing (QS). It enables the bacteria to avoid detection by the immune systems of the hosts and to only start harming people when their colonies reach uncontrollably high populations. It is also well-recognised that a wide range of internal and external variables can influence QS. Existing studies show that a mathematical model has been proven to be successful in describing the QS trait, which could be modified to include coefficients that would capture the variability of this trait. However, we also believed that using Artificial Intelligence (AI)-based model to predict this trait, may provide a better understanding of it. Therefore, we apply Artificial Neural Networks (ANN) to estimate the Ordinary Differential Equation (ODE) coefficients of the mathematical model in a multi-output regression problem which results in a more accurate prediction about how the bacteria would behave under various variables. Results demonstrate that the mathematical model for PA was improved with this new information. Overall, the result shows that an ANN achieved a mean concentration error of 0.0637 that could predict 4 out of 11 coefficients with a range of \(\pm\) 40% from their original values mentioned in the literature. Through the potential use of ANN in diagnosis and treatment planning, the enhanced model's predictive capabilities give it the potential to save lives in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made on reasonable request.

Code availability

Code will be made on reasonable request.

References

  1. Stover CK et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406(6799):959–964. https://doi.org/10.1038/35023079

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Azam MW, Khan AU (2019) Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today. https://doi.org/10.1016/j.drudis.2018.07.003

    Article  PubMed  Google Scholar 

  3. Bassetti M, Vena A, Croxatto A, Righi E, Guery BH (2018) ow to manage Pseudomonas aeruginosa infections. Drugs Context. https://doi.org/10.7573/dic.212527

    Article  PubMed  PubMed Central  Google Scholar 

  4. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro.2016.89

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hentzer M et al (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22(15):3803–3815. https://doi.org/10.1093/emboj/cdg366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dockery JD, Keener JP (2001) A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull Math Biol 63(1):95–116. https://doi.org/10.1006/bulm.2000.0205

    Article  CAS  PubMed  Google Scholar 

  7. Smith RS, Iglewski BH (2003) Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Investig 112(10):1460–1465. https://doi.org/10.1172/jci20364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parai D, Banerjee M, Dey P, Chakraborty A, Islam E, Mukherjee SK (2018) Effect of reserpine on Pseudomonas aeruginosa quorum sensing mediated virulence factors and biofilm formation. Biofouling 34(3):320–334. https://doi.org/10.1080/08927014.2018.1437910

    Article  CAS  PubMed  Google Scholar 

  9. Morales E et al (2012) Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. BMC Health Serv Res 12(1):1–8. https://doi.org/10.1186/1472-6963-12-122

    Article  Google Scholar 

  10. Taylor PK, Yeung ATY, Hancock REW (2014) Antibiotic resistance in Pseudomonas aeruginosa biofilms: Towards the development of novel anti-biofilm therapies. J Biotechnol 191:121–130. https://doi.org/10.1016/j.jbiotec.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  11. Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43(4):496–518. https://doi.org/10.1128/mr.43.4.496-518.1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Antanasijević D, Pocajt V, Perić-Grujić A, Ristić M (2018) Multiple-input–multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions. Atmos Pollut Res 9(2):388–397. https://doi.org/10.1016/j.apr.2017.10.011

    Article  CAS  Google Scholar 

  13. Punjani A and Abbeel P (2015) Deep learning helicopter dynamics models, in Proceedings: IEEE International Conference on Robotics and Automation, Jun. 2015, vol. 2015-June, no. June, 3223–3230. https://doi.org/10.1109/ICRA.2015.7139643

  14. Koerber AJ, King JR, Ward JP, Williams P, Croft JM, Sockett RE (2002) A mathematical model of partial-thickness burn-wound infection by Pseudomonas aeruginosa: Quorum sensing and the build-up to invasion. Bull Math Biol 64(2):239–259. https://doi.org/10.1006/bulm.2001.0272

    Article  CAS  PubMed  Google Scholar 

  15. Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P (2003) Early development and quorum sensing in bacterial biofilms. J Math Biol 47(1):23–55. https://doi.org/10.1007/s00285-002-0190-6

    Article  MathSciNet  PubMed  Google Scholar 

  16. Kuttler C, Maslovskaya A (2021) Hybrid stochastic fractional-based approach to modeling bacterial quorum sensing. Appl Math Model 93:360–375. https://doi.org/10.1016/j.apm.2020.12.019

    Article  MathSciNet  Google Scholar 

  17. Maslovskaya A, Kuttler C, Chebotarev A, Kovtanyuk A (2022) Optimal multiplicative control of bacterial quorum sensing under external enzyme impact. Mathemat Modell Nat Phen 17:29. https://doi.org/10.1051/mmnp/2022031

    Article  MathSciNet  CAS  Google Scholar 

  18. Mund A, Diggle SP, Harrison F (2017) The fitness of pseudomonas aeruginosa quorum sensing signal cheats is influenced by the diffusivity of the environment”. MBio. https://doi.org/10.1128/mBio.00353-17

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu S, Liu J, Liu C, Yang A, Qiao J (2020) Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03326-8

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rattray JB, Kramer P, Gurney J, Thomas S, Brown SP (2022) The dynamic response of quorum-sensing to density is robust to signal supplementation and signal synthase knockouts. bioRxiv. https://doi.org/10.1101/2022.09.12.507654

    Article  Google Scholar 

  21. Chuang SK, Vrla GD, Fröhlich KS, Gitai Z (2019) Surface association sensitizes Pseudomonas aeruginosa to quorum sensing. Nat Commun 10(1):1–10. https://doi.org/10.1038/s41467-019-12153-1

    Article  CAS  Google Scholar 

  22. Savijoki K et al (2023) Food-grade bacteria combat pathogens by blocking AHL-mediated quorum sensing and biofilm formation. Foods 12(1):90. https://doi.org/10.3390/foods12010090

    Article  CAS  Google Scholar 

  23. Ruz GA, Zúñiga A, Goles E (2018) A Boolean network model of bacterial quorumsensing systems. Int J Data Min Bioinform 21(2):123–144. https://doi.org/10.1504/IJDMB.2018.096405

    Article  Google Scholar 

  24. Anita S, Arokiadass R (2022) Mathematical model for early stage identification of Parkinson’s disease using neurotransmitter: GABA. Int J Informat Technol (Singapore) 14(1):265–273. https://doi.org/10.1007/s41870-021-00705-y

    Article  Google Scholar 

  25. Sinha BB, Ahsan M, Dhanalakshmi R (2023) LightGBM empowered by whale optimization for thyroid disease detection. Int J Informat Technol (Singapore) 15(4):2053–2062. https://doi.org/10.1007/s41870-023-01261-3

    Article  Google Scholar 

  26. Alam A, Muqeem M (2023) An optimal heart disease prediction using chaos game optimization-based recurrent neural model”. Int J Informat Technol (Singapore). https://doi.org/10.1007/s41870-023-01597-w

    Article  Google Scholar 

  27. Parthiban K, Rao YV, Harika B, Kumar R, Shaik A, Shankar SS (2023) Diagnose crop disease using Krill Herd optimization and convolutional neural scheme. Int J Informat Technol (Singapore) 15(8):4167–4178. https://doi.org/10.1007/s41870-023-01417-1

    Article  Google Scholar 

  28. Baharim MSA et al (2023) Optimization of machine learning classifier using multispectral data in assessment of Ganoderma basal stem rot (BSR) disease in oil palm plantation. Int J Informat Technol (Singapore) 15(8):4259–4273. https://doi.org/10.1007/s41870-023-01483-5

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Siddharth Kashyap.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naz, S., Kashyap, G.S. Enhancing the predictive capability of a mathematical model for pseudomonas aeruginosa through artificial neural networks. Int. j. inf. tecnol. (2024). https://doi.org/10.1007/s41870-023-01721-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41870-023-01721-w

Keywords

Navigation