Skip to main content
Log in

Development and Application of Photoionization Technology for Organic Analysis of Particulate Matter

  • Review
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

Photoionization (PI) is a soft ionization method that does not cause the production of molecular fragments from target materials. Applications of soft photoionization–mass spectrometric methods to molecular analysis are reviewed here. A non-selective photoionization technique (single-photon ionization, SPI) can be used to measure volatile compounds with molecular mass < 120 m/z, while a soft and selective technique (resonance enhanced multi-photon ionization, REMPI) is better suited for aromatic compounds whose molecular mass is > 100 m/z. The development of hyphenated thermal–optical analyzer photo-ionization time-of-flight mass spectrometers (PI-TOFMS) combined with REMPI and SPI methods has enabled the analyses of evolved gaseous species, and these advanced methods have led to new insights into the elemental and organic carbon in particulate matter. Nonetheless, technical developments in the REMPI/SPI–TOFMS framework are far from complete, and there are opportunities for the development of new process analysis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adam T, Zimmermann R (2007) Determination of single photon ionization cross sections for quantitative analysis of complex organic mixtures. Anal Bioanal Chem 389:1941–1951. https://doi.org/10.1007/s00216-007-1571-x

    Article  Google Scholar 

  • Alois F, Robert G, Thorsten S, Martin S, Ralf Z (2013) Hyphenation of two simultaneously employed soft photo ionization mass spectrometers with thermal analysis of biomass and biochar. Thermochim Acta 551:155–163

    Google Scholar 

  • Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242

    Google Scholar 

  • Briede JJ, De Kok T, Hogervorst JGF et al (2005) Development and application of an electron spin resonance spectrometry method for the determination of oxygen free radical formation by particulate matter. Environ Sci Technol 39:8420–8426

    Google Scholar 

  • Boesl U, Neusser HJ, Schlag EW (1978) Two-photon ionization of polyatomic molecules in a mass spectrometer. Zeitschrift Fur Naturforschung 33:1546

    Google Scholar 

  • Boesl U, Weinkauf R, Weickhardt C, Schlag EW (1994) Laser ion sources for time-of-flight mass spectrometry. Int J Mass Spectrom Ion Process 131:87–124

    Google Scholar 

  • Cao J (2016) Major causes and control strategies of the PM2.5 pollution in China. Sci Technol Rev 34(20):74–80

    Google Scholar 

  • Cao JJ, Xu H, Xu Q, Chen B, Kan H (2012) Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environ Health Perspect 120(3):373–378

    Google Scholar 

  • Diab J, Streibel T, Cavalli F, Lee SC, Saathoff H, Mamakos A, Chow JC, Chen A, L W, et al (2015) Hyphenation of a EC/OC thermal–optical carbon analyzer to photo-ionization time-of-flight mass spectrometry: an off-line aerosol mass spectrometric approach for characterization of primary and secondary particulate matter. Atmos Meas Tech 8:3337–3353

    Google Scholar 

  • Dickhut RM, Canuel EA, Gustafson KE (2000) Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay Region. Environ Sci Technol 34:4635–4640

    Google Scholar 

  • Faubert D, Paul GJC, Giroux J, Bertrand MJ (1993) Selective fragmentation and ionization of organic compounds using an energy-tunable rare-gas metastable beam source. Int J Mass Spectom Ion Processes 124:69

    Google Scholar 

  • Fuzzi S, Baltensperger U, Carslaw K, Decesari S et al (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys 15:8217–8299

    Google Scholar 

  • Hanley L (2009) Light and molecular ions: the emergence of vacuum UV single-photon ionization in MS. Anal Chem 81:4174–4182

    Google Scholar 

  • Heger HJ, Zimmermann R, Dorfner R, Beckmann M, Griebel H, Kettrup A, Boesl U (1999) On-line emission analysis of polycyclic aromatic hydrocarbons down to pptv concentration levels in the flue gas of an incineration pilot plant with a mobile resonance-enhanced multiphoton ionization time-of-flight mass spectrometer. Anal Chem 71:46–57

    Google Scholar 

  • Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environ Sci Technol 30:825–832

    Google Scholar 

  • Huang RJ, Zhang YL, Bozzetti C et al (2014) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514(7521):218–222

    Google Scholar 

  • Hendryk C, Claudia S, Sophie K, Sven E, Jessalin H, Ralf Z (2016) Resolving coffee roasting-degree phases based on the analysis of volatile compounds in the roasting off-gas by photoionization time-of-flight mass spectrometry (PI-TOFMS) and statistical data analysis: toward a PI-TOFMS roasting model. J Agric Food Chem 64:5223–5231

    Google Scholar 

  • Hertz-Schünemann R, Dorfner R, Yeretzian C, Streibela T, Ralf Z (2013) On-line process monitoring of coffee roasting by resonant laser ionisation time-of-flight mass spectrometry: bridging the gap from industrial batch roasting to flavour formation inside an individual coffee bean. J Mass Spectrom 48:1253–1265

    Google Scholar 

  • Hager JW, Wallace SC (1988) Two-laser photoionization supersonic jet mass spectrometry of aromatic molecules. Anal Chem 60:5–10

    Google Scholar 

  • Johannes P, Julian S, Markus O, Matthias F, Sven E, Cornelia J, Martin S, Ralf Z (2017) A new aerosol mass spectrometer for simultaneous detection of polyaromatic hydrocarbons and inorganic components from individual particles. Anal Chem 89:6341–6345

    Google Scholar 

  • Julian S, Johannes P, Robert I et al (2019) Spatially shaped laser pulses for the simultaneous detection of polycyclic aromatic hydrocarbons as well as positive and negative inorganic ions in single particle mass spectrometry. Anal Chem 91(15):10282–10288

    Google Scholar 

  • Klimcak CM, Wessel JE (1980) Gas chromatography with detection by laser excited resonance enhanced 2-Photon photoionization. Anal Chem 52:1233–1239

    Google Scholar 

  • Luck H, Ralf Z (2009) Light and molecular ions: the emergence of vacuum UV single-photon ionization in MS. Anal Chem 81:4174–4182

    Google Scholar 

  • Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom Ion Processes 173:191

    Google Scholar 

  • Matthias B, Martin S, Thorsten S, Ralf Z (2008) Online laser desorption-multiphoton postionization mass spectrometry of individual aerosol particles: molecular source indicators for particles emitted from different traffic-related and wood combustion sources. Anal Chem 80:8991–9004

    Google Scholar 

  • Markus SE, Ralf Z et al (2011) Determination of photoionization cross-sections of different organic molecules using gas chromatography coupled to single-photon ionization (SPI) time-of-flight mass spectrometry (TOF-MS) with an electron-beam-pumped rare gas excimer light source (EBEL): influence of molecular structure and analytical implications. Appl Spectrosc 65(7):806–816

    Google Scholar 

  • Misra P, Dubinski MA et al (2002) UV spectroscopy and UV lasers. Marcel Dekker, New York

    Google Scholar 

  • Muhlberger F, Saraji-Bozorgzad M, Gonin M, Fuhrer K, Zimmermann R (2007) Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source. Anal Chem 79:8118–8124

    Google Scholar 

  • Niu XY, Steven S et al (2017) Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM2.5 in the Beijing-Tianjin-Hebei region. Environ Pollut 231:1075–1084

    Google Scholar 

  • Ralf Z, Heger HJ, Kettrup A et al (1999) On-line monitoring of traces of aromatic-, phenolic- and chlorinated components in flue gases of industrial scale incinerators and cigarette smoke by direct-inlet laser ionization-mass spectrometry (REMPI-TOFMS). Fresenius J Anal Chem 363:720–730

    Google Scholar 

  • Ralf Z, Werner W, Thomas G (2008) Photo-ionisation mass spectrometry as detection method for gas chromatography Optical selectivity and multidimensional comprehensive separations. J Chromatogr A 1184:296–308

    Google Scholar 

  • Ralph D, Thomas F, Chahan Y, Antonius K, Ralf Z et al (2004) Laser mass spectrometry as on-line sensor for industrial process analysis: process control of coffee roasting. Anal Chem 76:1386–1402

    Google Scholar 

  • Ralf Z, Boesl U, Lenoir D, Schramm K-W, Kettrup A, Schlag EW (1994) Isomer-selective ionization of chlorinated aromatics with lasers for analytical time-of-flight mass spectrometry: first results for polychlorinated dibenzo-p-dioxins (PCDD), biphenyls (PCB) and benzenes (PCBz). Chemosphere 29:1877–1888

    Google Scholar 

  • Ralf Z, Romy H, Sven E, Chuan L, Kevin M, Richard B, Thorsten S (2015) Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette. Anal Chem 87:1711–1717

    Google Scholar 

  • Robert G, Mohammad RS, Thomas G et al (2009) Single photon ionization orthogonal acceleration time-of-flight mass spectrometry and resonance enhanced multiphoton ionization time-of-flight mass spectrometry for evolved gas analysis in thermogravimetry: comparative analysis of crude oils. Anal Chem 81:6038–6048

    Google Scholar 

  • Saraji-Bozorgzad M, Geissler R, Streibel T, Muhlberger F, Sklorz M, Kaisersberger E, Denner T, Ralf Z (2008) Thermogravimetry coupled to single photon ionization quadrupole mass spectrometry: a tool to investigate the chemical signature of thermal decomposition of polymeric materials. Anal Chem 80:3393–3403

    Google Scholar 

  • Sippula O, Stengel B, Sklorz M, Streibel T, Rabe R et al (2014) Particle emissions from a marine engine: chemical composition and aromatic emission profiles under various operating conditions. Environ Sci Technol 48:11721–11729

    Google Scholar 

  • Stefan M, Thomas A, Thorsten S, Richard RB, Ralf Z (2005) Application of time-of-flight mass spectrometry with laser-based photoionization methods for time-resolved on-line analysis of mainstream cigarette smoke. Anal Chem 77:2288–2296

    Google Scholar 

  • Simoneit BRT, Sheng GY, Chen X, Fu JM, Zhang J, Xu Y (1991) Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmos Environ 25A:2111–2129

    Google Scholar 

  • Schauer JJ, Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1996) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 22:3837–3855

    Google Scholar 

  • Smith D, Spanell P (1996) The novel selected-ion flow tube approach to trace gas analysis of air and breath. Rapid Commun Mass Spectrom 10:1183

    Google Scholar 

  • Thanner H, Krempl PW, Selic R et al (2003) GaPO4 hightemperature crystal microbalance demonstration up to 720°C. J Therm Anal Calorim 71(1):53–59

    Google Scholar 

  • Thorsten S, Ralf Z (2014) Resonance-enhanced multiphoton ionization mass spectrometry (REMPI-MS): applications for process analysis. Annu Rev Anal Chem 7:361–381

    Google Scholar 

  • Toni M, Hendryk C, Benjamin S, Gülcin A, Jürgen O, Martin S, Thorsten S, Ralf Z (2019a) Composition of carbonaceous fine particulate emissions of a flexible fuel DISI engine under high velocity and municipal conditions. Fuel 236:1465–1473

    Google Scholar 

  • Toni M, Hendryk C, Anni H, Mika I, Jürgen O, Gülcin A, Jarkko T, Thorsten S, Jorma J, Olli S, Ralf Z (2019b) Impact of photochemical ageing on Polycyclic Aromatic Hydrocarbons (PAH) and oxygenated PAH (Oxy-PAH/OH-PAH) in logwood stove emissions. Sci Total Environ 686:382–392

    Google Scholar 

  • Wang YC, Wang YQ, Ye JH et al (2019) A review of aerosol chemical composition and sources in representative regions of China during wintertime. Atmosphere 10:277–291

    Google Scholar 

  • WHO (1998) Selected non-heterocyclic polycyclic aromatic hydrocarbons. World Health Organization

  • Xu ZQ, Qin HB (2018) Development of technique in analysisof organic pollutants in airborne particulate matters. Chemical Analysis Meterage 27(3):118–122

    Google Scholar 

  • Xu HM, Steven SHO, Gao ML et al (2016) Microscale spatial distribution and health assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) at nine communities in Xi’an, China. Environ Pollut 218:1065–1073

    Google Scholar 

  • Zhao ZZ, Cao JJ, Chow JC et al (2019) Multi-wavelength light absorption of black and brown carbon at a high-altitude site on the Southeastern margin of the Tibetan Plateau, China. Atmos Environ 212:54–64

    Google Scholar 

Download references

Funding

This is funded by West Light Foundation of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Cao.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Cao, J. Development and Application of Photoionization Technology for Organic Analysis of Particulate Matter. Aerosol Sci Eng 6, 127–134 (2022). https://doi.org/10.1007/s41810-022-00130-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-022-00130-z

Keywords

Navigation